摘要:已知二次函数的图像经过点.是否存在常数a.b.c使得不等式对一切实数x都成立?若存在.求出a.b.c,若不存在.请说出理由.
网址:http://m.1010jiajiao.com/timu3_id_4466878[举报]
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
sin(θ-
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
查看习题详情和答案>>
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
1 1 |
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2 |
π |
4 |
|
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
|
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
|
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
请选做一题,都做时按先做的题判分,都做不加分.
(1)已知向量
=(2sinx,cosx-sinx),
=(
cosx,cosx+sinx),函数f(x)=
•
.
①求函数f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所对的边分别是a、b、c,若f(
)=2且a2=bc,试判断△ABC的形状.
(2)已知锐角△ABC,sin(A+B)=
,sin(A-B)=
.
①求证:tanA=2tanB;
②设AB=3,求AB边上的高CD的长. 查看习题详情和答案>>
(1)已知向量
m |
n |
3 |
m |
n |
①求函数f(x)的最小正周期和值域;
②在△ABC中,角A、B、C所对的边分别是a、b、c,若f(
A |
2 |
(2)已知锐角△ABC,sin(A+B)=
3 |
5 |
1 |
5 |
①求证:tanA=2tanB;
②设AB=3,求AB边上的高CD的长. 查看习题详情和答案>>
本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2.
查看习题详情和答案>>
在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
查看习题详情和答案>>
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2sin(),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.
查看习题详情和答案>>