摘要:19.(1)解:设B (.m).C(x1.y1)). 由.得:2(x1.y1) = (1.0) + (-1.m).解得x1 = 0. 2分 设M(x.y).由.得. 4分 消去m得E的轨迹方程. 6分 (2)解:由题设知C为AB中点.MC⊥AB.故MC为AB的中垂线.MB∥x轴. 设M().则B(-1.y0).C(0.). 当y0≠0时..MC的方程 8分 将MC方程与联立消x.整理得:. 它有唯一解.即MC与只有一个公共点. 又.所以MC为的切线. 10分 当y0 = 0时.显然MC方程x = 0为轨迹E的切线 综上知.MC为轨迹E的切线.
网址:http://m.1010jiajiao.com/timu3_id_4456475[举报]
(2012•三明模拟)(1)选修4-2:矩阵与变换
设矩阵M=
.
(I)若a=2,b=3,求矩阵M的逆矩阵M-1;
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
(α为参数),点Q极坐标为(2,
).
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.
查看习题详情和答案>>
设矩阵M=
|
(I)若a=2,b=3,求矩阵M的逆矩阵M-1;
(II)若曲线C:x2+4xy+2y2=1在矩阵M的作用下变换成曲线C':x2-2y2=1,求a+b的值.
(2)选修4-4:坐标系与参数方程
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为
|
7π |
4 |
(Ⅰ)化圆C的参数方程为极坐标方程;
(Ⅱ)若点P是圆C上的任意一点,求P、Q两点距离的最小值.
(3)选修4-5:不等式选讲
设函数f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若关于x的不等式f(x)≥4的解集为A,求集合A.
设函数f(x)是定义在R上的偶函数.若当x≥0时,f(x)=
(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.
查看习题详情和答案>>
|
|
(1)求f(x)在(-∞,0)上的解析式.
(2)请你作出函数f(x)的大致图象.
(3)当0<a<b时,若f(a)=f(b),求ab的取值范围.
(4)若关于x的方程f2(x)+bf(x)+c=0有7个不同实数解,求b,c满足的条件.