ÌâÄ¿ÄÚÈÝ
£¨2012•ÈýÃ÷Ä£Ä⣩£¨1£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
Éè¾ØÕóM=
£®
£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨II£©ÈôÇúÏßC£ºx2+4xy+2y2=1ÔÚ¾ØÕóMµÄ×÷ÓÃϱ任³ÉÇúÏßC'£ºx2-2y2=1£¬Çóa+bµÄÖµ£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔµãÖغϣ¬¼«ÖáÓëÖ±½Ç×ø±êϵÖÐxÖáµÄÕý°ëÖáÖغϣ®Ô²CµÄ²ÎÊý·½³ÌΪ
£¨¦ÁΪ²ÎÊý£©£¬µãQ¼«×ø±êΪ(2£¬
)£®
£¨¢ñ£©»¯Ô²CµÄ²ÎÊý·½³ÌΪ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÔ²CÉϵÄÈÎÒâÒ»µã£¬ÇóP¡¢QÁ½µã¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|x+1|+|x-2|£®
£¨¢ñ£©Çóy=f£¨x£©µÄ×îСֵ£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªA£¬Ç󼯺ÏA£®
Éè¾ØÕóM=
|
£¨I£©Èôa=2£¬b=3£¬Çó¾ØÕóMµÄÄæ¾ØÕóM-1£»
£¨II£©ÈôÇúÏßC£ºx2+4xy+2y2=1ÔÚ¾ØÕóMµÄ×÷ÓÃϱ任³ÉÇúÏßC'£ºx2-2y2=1£¬Çóa+bµÄÖµ£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖª¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔµãÖغϣ¬¼«ÖáÓëÖ±½Ç×ø±êϵÖÐxÖáµÄÕý°ëÖáÖغϣ®Ô²CµÄ²ÎÊý·½³ÌΪ
|
7¦Ð |
4 |
£¨¢ñ£©»¯Ô²CµÄ²ÎÊý·½³ÌΪ¼«×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÔ²CÉϵÄÈÎÒâÒ»µã£¬ÇóP¡¢QÁ½µã¾àÀëµÄ×îСֵ£®
£¨3£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
É躯Êýf£¨x£©=|x+1|+|x-2|£®
£¨¢ñ£©Çóy=f£¨x£©µÄ×îСֵ£»
£¨¢ò£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªA£¬Ç󼯺ÏA£®
·ÖÎö£º£¨1£©£¨I£©Éè¾ØÕóMµÄÄæ¾ØÕóM-1=
£¬ÔòMM-1=
£¬½¨Á¢·½³Ì×飬¼´¿ÉÇóµÃËùÇóµÄÄæ¾ØÕó£»
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬¿ÉµÃ
£¬ÀûÓõãP'£¨x'£¬y'£©ÔÚÇúÏßC'ÉÏ£¬¿ÉµÃÇúÏßCµÄ·½³Ì£¬¸ù¾ÝÒÑÖªÇúÏßCµÄ·½³Ì£¬±È½ÏϵÊý¿ÉµÃ½áÂÛ£»
£¨2£©£¨I£©ÏÈÇóÔ²CµÄÆÕͨ·½³Ì£¬Õ¹¿ª£¬ÔÙ»¯Îª¼«×ø±ê·½³Ì£»
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬Çó³ö|QC|=
£¬¿ÉµÃP£¬QÁ½µã¾àÀëµÄ×îСֵ£»
£¨3£©£¨I£©ÀûÓþø¶ÔÖµµÄÔËÓã¬Ð´³ö·Ö¶Îº¯Êý£¬´Ó¶ø¿ÉÇóy=f£¨x£©µÄ×îСֵ£»
£¨II£©ÀûÓ÷ֶκ¯Êý£¬¸ù¾Ýf£¨x£©¡Ý4£¬Áгö²»µÈʽ£¬¼´¿ÉÇóµÃ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯£®
|
|
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬¿ÉµÃ
|
£¨2£©£¨I£©ÏÈÇóÔ²CµÄÆÕͨ·½³Ì£¬Õ¹¿ª£¬ÔÙ»¯Îª¼«×ø±ê·½³Ì£»
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬Çó³ö|QC|=
2 |
£¨3£©£¨I£©ÀûÓþø¶ÔÖµµÄÔËÓã¬Ð´³ö·Ö¶Îº¯Êý£¬´Ó¶ø¿ÉÇóy=f£¨x£©µÄ×îСֵ£»
£¨II£©ÀûÓ÷ֶκ¯Êý£¬¸ù¾Ýf£¨x£©¡Ý4£¬Áгö²»µÈʽ£¬¼´¿ÉÇóµÃ²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯£®
½â´ð£º£¨1£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
½â£º£¨I£©Éè¾ØÕóMµÄÄæ¾ØÕóM-1=
£¬ÔòMM-1=
£®ÓÖM=
£¬
ËùÒÔ
=
£¬ËùÒÔx1+2x2=1£¬3x1+x2=0£¬y1+2y2=0£¬3y1+y2=1£¬
¼´x1=-
£¬y1=
£¬x2=
£¬y2=-
£¬
¹ÊËùÇóµÄÄæ¾ØÕóM-1=
£®¡£¨4·Ö£©
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬Ôò
=
£¬¼´
£¬¡£¨5·Ö£©
ÓÖµãP'£¨x'£¬y'£©ÔÚÇúÏßC'ÉÏ£¬ËùÒÔx'2-2y'2=1£¬Ôò£¨x+ay£©2-2£¨bx+y£©2=1£¬
¼´£¨1-2b2£©x2+£¨2a-4b£©xy+£¨a2-2£©y2=1ΪÇúÏßCµÄ·½³Ì£¬
ÓÖÒÑÖªÇúÏßCµÄ·½³ÌΪx2+4xy+2y2=1£¬
±È½ÏϵÊý¿ÉµÃ
£¬½âµÃb=0£¬a=2£¬¡àa+b=2£®¡£¨7·Ö£©
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½â£º£¨I£©Ô²CÆÕͨ·½³ÌΪ£¨x-1£©2+£¨y+1£©2=4£¬
Õ¹¿ªµÃx2+y2-2x+2y-2=0£¬¡£¨2·Ö£©
»¯Îª¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È+2¦Ñsin¦È-2=0£® ¡£¨4·Ö£©
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬
ÒòΪ|QC|=
£¬ËùÒÔP£¬QÁ½µã¾àÀëµÄ×îСֵΪ|PC|=2-
£® ¡£¨7·Ö£©
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â£º£¨I£©f(x)=
ËùÒÔy=f£¨x£©µÄ×îСֵΪ3£®¡£¨4·Ö£©
£¨II£© ÓÉ£¨I£©¿ÉÖª£¬µ±x¡Ü-1ʱ£¬f£¨x£©¡Ý4£¬¼´-2x+1¡Ý4£¬´Ëʱx¡Ü-
£»
µ±x¡Ý2ʱ£¬f£¨x£©¡Ý4£¬¼´2x-1¡Ý4£¬´Ëʱx¡Ý
£®
Òò´Ë²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªAΪ{|x¡Ü-
»òx¡Ý
}£® ¡£¨7·Ö£©
½â£º£¨I£©Éè¾ØÕóMµÄÄæ¾ØÕóM-1=
|
|
|
ËùÒÔ
|
|
|
¼´x1=-
1 |
5 |
2 |
5 |
3 |
5 |
1 |
5 |
¹ÊËùÇóµÄÄæ¾ØÕóM-1=
|
£¨II£©ÉèÇúÏßCÉÏÈÎÒâÒ»µãP£¨x£¬y£©£¬ËüÔÚ¾ØÕóMËù¶ÔÓ¦µÄÏßÐԱ任×÷ÓÃϵõ½µãP'£¨x'£¬y'£©£¬Ôò
|
|
|
|
ÓÖµãP'£¨x'£¬y'£©ÔÚÇúÏßC'ÉÏ£¬ËùÒÔx'2-2y'2=1£¬Ôò£¨x+ay£©2-2£¨bx+y£©2=1£¬
¼´£¨1-2b2£©x2+£¨2a-4b£©xy+£¨a2-2£©y2=1ΪÇúÏßCµÄ·½³Ì£¬
ÓÖÒÑÖªÇúÏßCµÄ·½³ÌΪx2+4xy+2y2=1£¬
±È½ÏϵÊý¿ÉµÃ
|
£¨2£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
½â£º£¨I£©Ô²CÆÕͨ·½³ÌΪ£¨x-1£©2+£¨y+1£©2=4£¬
Õ¹¿ªµÃx2+y2-2x+2y-2=0£¬¡£¨2·Ö£©
»¯Îª¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È+2¦Ñsin¦È-2=0£® ¡£¨4·Ö£©
£¨II£©µãQµÄÖ±½Ç×ø±êΪ£¨2£¬-2£©£¬ÇÒµãQÔÚÔ²CÄÚ£¬
ÒòΪ|QC|=
2 |
2 |
£¨3£©£¨±¾Ð¡ÌâÂú·Ö7·Ö£©Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
½â£º£¨I£©f(x)=
|
£¨II£© ÓÉ£¨I£©¿ÉÖª£¬µ±x¡Ü-1ʱ£¬f£¨x£©¡Ý4£¬¼´-2x+1¡Ý4£¬´Ëʱx¡Ü-
3 |
2 |
µ±x¡Ý2ʱ£¬f£¨x£©¡Ý4£¬¼´2x-1¡Ý4£¬´Ëʱx¡Ý
5 |
2 |
Òò´Ë²»µÈʽf£¨x£©¡Ý4µÄ½â¼¯ÎªAΪ{|x¡Ü-
3 |
2 |
5 |
2 |
µãÆÀ£º±¾Ì⿼²éÑ¡ÐÞ֪ʶ£¬¿¼²é¾ØÕóÓë±ä»»£¬¿¼²é×ø±êϵÓë²ÎÊý·½³Ì£¬¿¼²é²»µÈʽѡ½²£¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿