摘要:如图.在四棱锥P-ABCD中.底面ABCD为正方形.PD⊥平面ABCD.且PD = AB = a.E是PB的中点.F为AD中点. (1)求异面直线PD.AE所成的角, (2)求证:EF⊥平面PBC. (3)求二面角F-PC-E的大小.
网址:http://m.1010jiajiao.com/timu3_id_4456469[举报]
(本小题满分12分)
如图,在四棱锥P-ABCD中,PA底面ABCD,
DAB为直角,AB∥CD,AD=CD=2AB,E、F分别为PC、CD的中点.
(Ⅰ)试证:AB平面BEF;
(Ⅱ)设PA=k·AB,若平面与平面
的夹角大于
,求k的取值范围.
查看习题详情和答案>>
1. (本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,
.
(1) 证明:AD⊥平面PAB;
(2) 求异面直线PC与AD所成的角的大小;
(3) 求二面角P—BD—A的大小.
查看习题详情和答案>>
1. (本小题满分12分)
如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,
.
(1) 证明:AD⊥平面PAB;
(2) 求异面直线PC与AD所成的角的大小;
(3) 求二面角P—BD—A的大小.
查看习题详情和答案>>