甘肃省天水一中2009届高三第一学期期末考试数学试题(文)
命题:王开祥 校对:王亚平 审核:高玲玲
考生注意:
本试卷分第I卷(选择题)和第II卷(非选择题)两部分. 共150分. 考试时间120分钟.
第I卷
参考公式:
如果事件A、B互斥,那么P(A+B)=P(A)+P(B)
如果事件A、B相互独立,那么P(A?B)=P(A)?P(B)
如果事件A在一次试验中发生的概率是P,那么
n次独立重复试验中恰好发生k次的概率
Pn(k)=CPk(1-P)n-k
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.若集合,则= ( )
A.[-1,0] B.[0, ) C. D.
2.下列函数中周期为2的是 ( )
A.y = 2 B.y = sin2x + cos2x
C.y = tan () D.y = sin xcos x
3.函数的图像大致形状是 ( )
4.等差数列中,已知=16,=4,则= ( )
A.8
B
2
5.函数图象的一条对称轴方程是 ( )
A. B. C. D.
6. 若命题P: ,命题Q: ,则P是Q的 ( )
A.充分非必要条件 B.必要非充分条件
C. 充要条件 D.既不充分也不必要条件
7.设m、n是不同的直线,是不同的平面,有以下四个命题
① ②
③ ④
其中为真命题的是 ( )
A.①④ B.②③ C.①③ D.②④
8.若,且,则下列不等式中恒成立的是 ( )
A. B. C. D.
9、若数列的通项公式为=,则数列的前n项和为: ( )
A. B. C. D.
10.将圆平移后,恰好与直线相切,则实数b的值为 ( )
A. B.- C. D.-
11.如图,正四棱柱中,,
则异面直线所成角的余弦值为( )
A. B. C. D.
12.已知抛物线的焦点恰好是椭圆的右焦点F,且这两条曲线交点的连线过点F,则该椭圆的离心率为 ( )
A. B. C. D.
第Ⅱ卷(非选择题 共90分)
二、填空题:本大题共4小题,每小题5分,共20分
13.已知,且,∠AOB=60°,则=__
与的夹角为__
14.实数的最大值为___
15.三角形的值为_______.
16.对于任意实数m、n,直线恒过定点的坐标是 .
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17.(本大题共10分)解不等式.
18(本小题满分12分)已知角为的三个内角,其对边分别为,若向量,,,且.
(1)若的面积,求bc的值.
(2)求的取值范围.
19、(本小题满分12分)某射手进行射击训练,假设每次射击击中目标的概率为,且各次射击的结果互不影响。
(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);
(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);
20. (本小题满分12分)已知函数.
(I)若曲线在点处的切线的倾斜角为,求实数的值;
(II)若函数在区间上单调递增,求实数的取值范围.
21.(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,.
(Ⅰ)求数列,的通项公式;
(Ⅱ)求数列的前n项和Sn.
22.(本小题满分12分)已知直线与抛物线相切于点P(2,1),且与轴交于点A,定点B的坐标为(2,0).
(I)若动点M满足,求点M的轨迹C;
(II)若过点B的直线(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求与面积之比的取值范围。
天水一中2006级2008――2009学年第一学期期末考试题
一、选择题:本大题共12小题,每小题5分,共60分.
BCBBA BCDCB DA
二.填空题:本大题共4小题,每小题5分,共20分.
13. 2 14 . 15. 4 16.
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17. (本大题共10分)
解: 4分
或 8分
故原不等式的解集为 10分
18. (本小题满分12分)
解:(1),,且.
,即,又,……..2分
又由, 5分
(2)由正弦定理得:, 7分
又,
…………9分
,则.则,
即的取值范围是………………… 12分
19.(本小题满分12分)
(1)解:设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率
= 7分
(2)解:射手第3次击中目标时,恰好射击了4次的概率
12分
20. (本小题满分12分)
(Ⅰ)∵
∴ 2分
∵ 4分
∴ 6分
(Ⅱ)∵函数在区间上单调递增
∴对一切恒成立
方法1 时成立
当时,等价于不等式恒成立
令
当时取到等号,所以
∴ 12分
方法2 设
对称轴
当时,要满足条件,只要成立
当时,,∴
当时,只要矛盾
综合得 12分
21.(本小题满分12分)
解:(Ⅰ)设的公差为d,{Bn}的公比为q,则依题意有q>0且
解得d=2,q=2.
所以, ,
6分
(Ⅱ) 错位相减法得: n=1,2,3… 12分
22.(本小题满分12分)
解:(I)由
故的方程为点A的坐标为(1,0) 2分
设
由
整理 4分
M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆 5分
(II)如图,由题意知的斜率存在且不为零,
设方程为①
将①代入,整理,得
7分
设、,则 ②
令由此可得
由②知
,
即 10分
解得
又
面积之比的取值范围是 12分