网址:http://m.1010jiajiao.com/timu_id_574467[举报]
一、选择题:本大题共12小题,每小题5分,共60分.
BCBBA BCDCB DA
二.填空题:本大题共4小题,每小题5分,共20分.
13. 2 14 . 15. 4 16.
三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)
17. (本大题共10分)
解: 4分
或 8分
故原不等式的解集为 10分
18. (本小题满分12分)
解:(1),,且.
,即,又,……..2分
又由, 5分
(2)由正弦定理得:, 7分
又,
…………9分
,则.则,
即的取值范围是………………… 12分
19.(本小题满分12分)
(1)解:设“射手射击1次,击中目标”为事件A
则在3次射击中至少有两次连续击中目标的概率
= 7分
(2)解:射手第3次击中目标时,恰好射击了4次的概率
12分
20. (本小题满分12分)
(Ⅰ)∵
∴ 2分
∵ 4分
∴ 6分
(Ⅱ)∵函数在区间上单调递增
∴对一切恒成立
方法1 时成立
当时,等价于不等式恒成立
令
当时取到等号,所以
∴ 12分
方法2 设
对称轴
当时,要满足条件,只要成立
当时,,∴
当时,只要矛盾
综合得 12分
21.(本小题满分12分)
解:(Ⅰ)设的公差为d,{Bn}的公比为q,则依题意有q>0且
解得d=2,q=2.
所以, ,
6分
(Ⅱ) 错位相减法得: n=1,2,3… 12分
22.(本小题满分12分)
解:(I)由
故的方程为点A的坐标为(1,0) 2分
设
由
整理 4分
M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆 5分
(II)如图,由题意知的斜率存在且不为零,
设方程为①
将①代入,整理,得
7分
设、,则 ②
令由此可得
由②知
,
即 10分
解得
又
面积之比的取值范围是 12分
(本小题满分12分)已知函数
(I)若函数在区间上存在极值,求实数a的取值范围;
(II)当时,不等式恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1),其定义域为,则令,
则,
当时,;当时,
在(0,1)上单调递增,在上单调递减,
即当时,函数取得极大值. (3分)
函数在区间上存在极值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,则,
,即在上单调递增, (7分)
,从而,故在上单调递增, (7分)
(8分)
(3)由(2)知,当时,恒成立,即,
令,则, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
查看习题详情和答案>>
(I)若b=-2,求c的值;
(II)当x∈[-1,3]时,函数f(x)的切线的斜率最小值是-1,求b、c的值.
查看习题详情和答案>>