网址:http://m.1010jiajiao.com/paper/timu/5157707.html[举报]
31.(福建•理•18题)如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点。
(Ⅰ)求证:AB1⊥面A1BD;
(Ⅱ)求二面角A-A1D-B的大小;
(Ⅲ)求点C到平面A1BD的距离;
分析:本小题主要考查直线与平面的位置关系,二面角的大小,点到平面的距离等知识,考查空间想象能力、逻辑思维能力和运算能力.满分12分.
解答:解法一:(Ⅰ)取中点,连结.
为正三角形,.
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点,
,
.
在正方形中,,
平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
,
为二面角的平面角.
在中,由等面积法可求得,
又,
.
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由得,
.
点到平面的距离为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
,,
,.
平面.
(Ⅱ)设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)由(Ⅱ),为平面法向量,
.
点到平面的距离.