ÌâÄ¿ÄÚÈÝ
3£®ÖÊÁ¿Îª4mµÄСÎï¿éA¾²Ö¹ÔÚÀëµØÃæ¸ßhµÄˮƽ×ÀÃæµÄ±ßÔµ£¬ÖÊÁ¿ÎªmµÄСÎï¿éBÑØ×ÀÃæÏòAÔ˶¯ÒÔËÙ¶Èv0=3L$\sqrt{\frac{g}{2h}}$ÓëÖ®·¢ÉúÕýÅö£¨Åöײʱ¼ä¼«¶Ì£©£®ÅöºóAÀ뿪×ÀÃ棬ÆäÂäµØµãÀë³ö·¢µãµÄˮƽ¾àÀëΪL£¬ÅöºóB·´ÏòÔ˶¯£®ÒÑÖªBÓë×ÀÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì£¬ÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ç󣺣¨1£©BºóÍ˵ľàÀëΪ¶àÉÙ£¿
£¨2£©Õû¸öÔ˶¯¹ý³ÌÖУ¬Îï¿éB¿Ë·þĦ²ÁÁ¦×öµÄ¹¦ÓëÒòÅöײËðʧµÄ»úеÄÜÖ®±ÈΪ¶àÉÙ£®
·ÖÎö £¨1£©Ð¡Îï¿éBÓëÎï¿éA·¢ÉúÕýÅöµÄ¹ý³Ì£¬×ñÊض¯Á¿Êغ㶨ÂÉ£®ÅöºóAÀ뿪×ÀÃæ×öƽÅ×Ô˶¯£¬Óɸ߶ÈhºÍˮƽ¾àÀëΪLÇó³öÅöºóAµÄËٶȣ¬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öBÅöºóµÄËٶȣ¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½âBºóÍ˵ľàÀ룮
£¨2£©Îï¿éB¿Ë·þĦ²ÁÁ¦×öµÄ¹¦µÈÓÚËðʧµÄ¶¯ÄÜ£¬Óɶ¯ÄܵļÆË㹫ʽ¼ÆËã³öÒòÅöײËðʧµÄ»úеÄÜ£¬È»ºóÇó³ö±ÈÖµ¼´¿É£®
½â´ð ½â£ºÉètΪA´ÓÀ뿪×ÀÃæÖÁÂäµØ¾ÀúµÄʱ¼ä£¬V±íʾ¸ÕÅöºóAµÄËٶȣ¬ÓУº
h=$\frac{1}{2}$gt2
L=vAt
½âµÃ£ºvA=L$\sqrt{\frac{g}{2h}}$
ÉèvΪ¸ÕÅöºóBµÄËٶȵĴóС£¬Óɶ¯Á¿Êغ㶨Âɵãº
mv0=MvA-mv
Óɹ¦ÄܹØϵµÃ£º$¡÷E=\frac{1}{2}m{v}_{0}^{2}-\frac{1}{2}¡Á4m{v}_{A}^{2}-\frac{1}{2}m{v}^{2}$
ÉèBºóÍ˵ľàÀëΪl£¬Óɶ¯Äܶ¨ÀíµÃ£º
-¦Ìmgx=0-$\frac{1}{2}$mv2
ÓÉÒÔÉϸ÷ʽµÃ£ºx=$\frac{{L}^{2}}{4¦Ìh}$
£¨2£©Îï¿éB¿Ë·þĦ²ÁÁ¦×öµÄ¹¦µÈÓÚBËðʧµÄ¶¯ÄÜ£¬µÃ£º
$\frac{{W}_{f}}{¡÷E}=\frac{\frac{1}{2}m{v}^{2}}{¡÷E}$
´úÈëÊý¾ÝµÃ£º$\frac{{W}_{f}}{¡÷E}=\frac{1}{4}$
´ð£º£¨1£©BºóÍ˵ľàÀëΪ$\frac{{L}^{2}}{4¦Ìh}$£»
£¨2£©Õû¸öÔ˶¯¹ý³ÌÖУ¬Îï¿éB¿Ë·þĦ²ÁÁ¦×öµÄ¹¦ÓëÒòÅöײËðʧµÄ»úеÄÜÖ®±ÈΪ$\frac{1}{4}$£®
µãÆÀ ±¾ÌâÊǶà¹ý³ÌµÄÎÊÌ⣬¿¼²é·ÖÎöÎïÀí¹ý³Ì¡¢Ñ¡Ôñ½âÌâ¹æÂɵÄÄÜÁ¦£®¶ÔÓÚÅöײ¹ý³Ì×î»ù±¾µÄ¹æÂÉÊǶ¯Á¿Êغ㣮¶ÔÓÚƽÅ×Ô˶¯£¬ÖªµÀ¸ß¶ÈºÍˮƽ¾àÀë¿ÉÒÔÇó³öƽÅ×Ô˶¯µÄ³õËٶȣ®
A£® | A¡¢B±£³ÖÏà¶Ô¾²Ö¹ | |
B£® | BÓëбÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ$\frac{F-mgsin¦È-¦Ìmgcos¦È}{2sincos¦È}$ | |
C£® | µØÃæ¶ÔбÃæÌåµÄĦ²ÁÁ¦µÈÓÚFcos¦È | |
D£® | µØÃæÊܵ½µÄѹÁ¦µÈÓÚ£¨M+2m£©g |
A£® | 0 | B£® | 2¦ÐkmgR | C£® | 2kmgR | D£® | 0.5kmgR |
A£® | v3£¾v2£¾v1 | B£® | T3£¾T2£¾T1 | C£® | a3£¾a1£¾a2 | D£® | a3£¾a2£¾a1 |
A£® | V1ʾÊý¼õС | |
B£® | $\frac{¡÷{U}_{2}}{¡÷I}$£¾$\frac{¡÷{U}_{3}}{¡÷I}$ | |
C£® | QµãµçÊÆÉý¸ß | |
D£® | R3ÖеĵçÁ÷·½ÏòÓÉMÏòN£¬Î¢Á£AÔȼÓËÙÏÂÒÆ |