题目内容
【题目】如图所示,一条细细一端与地板上的物体B(物体B质量足够大)相连,另一端绕过质量不计的定滑轮与小球A相连,定滑轮用另一条细线悬挂在天花板上的O′点,细线与竖直方向所成的角度为,则
A. 如果将物体B在地板上向右移动稍许,角将增大
B. 无论物体B在地板上左移还是右移,只要距离足够小,角将不变
C. 增大小球A的质量,角一定减小
D. 悬挂定滑轮的细线的弹力不可能等于小球A的重力
【答案】AD
【解析】对小球A受力分析,受重力和拉力,根据平衡条件,有:T=mg;如果将物体B在地板上向右移动稍许,则∠AOB增加;对滑轮分析,受三个拉力,如图所示:
根据平衡条件,∠AOB=2α,故α一定增加,故A正确,B错误;增大小球A的质量,系统可能平衡,故α可能不变,故C错误;由于∠AOB=2α<90°,弹力F与两个拉力T的合力平衡,而T=mg.故定滑轮的细线的弹力不可能等于小球A的重力,故D正确;故选AD.
【题目】粗糙绝缘的水平面附近存在一个平行于水平面的电场,其中某一区域的电场线与x轴平行,且沿x 轴方向的电势φ 与坐标值x 的关系如下表格所示:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
x/m | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 |
φ/(×105 V) | 9.00 | 4.50 | 3.00 | 2.25 | 1.80 | 1.50 | 1.29 | 1.13 | 1.00 |
根据上述表格中的数据可作出如图所示的φ—x 图象(实线).
现有一质量为m=0.10kg、电荷量为q=1.0×10-7 C、带正电荷的滑块P(可视作质点),其与水平面间的动摩擦因数μ=0.20,g取10m/s2.问:
(1)由数据表格和图象给出的信息,写出沿x 轴的电势φ 与x 的函数关系表达式.
(2)若将滑块P 无初速度地放在x1=0.10m 处,则滑最终停止在何处?
(3)当它位于x=0.15m 时它的加速度为多大?(电场中某点场强大小为φ—x 图线上某点对应的斜率大小,如虚线所示。) 在上述第(2)问的整个运动过程中,滑块P 的加速度如何变化?
(4)若滑块P 从x=0.60m 处以初速度v0 沿x 轴负方向运动,要使滑块恰能回到出发点,其初速度v0 应为多大?