题目内容

在一只静止的小船上练习射击,船、人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗质量为m,枪口到靶的距离为l,子弹射出枪口时相对于地面的速度为v,在发射后一颗子弹时,前一颗子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少?
【错解分析】错解: 设第一颗子弹射出后船的后退速度为v′,后退距离为S1,子弹从枪口到靶所用的时间为:
  
  对这颗子弹和其他物体构成的系统列动量守恒方程:
mv = [M+(n-1)m]v′ ②
  在时间t内船的后退距离
s1= v′t ③
  子弹全部射出后船的后退距离
s = ns1
  联立①②③④解得:


  【正确解答】 设子弹射出后船的后退速度为v′,后退距离为s1=v′t,如图5-5所示,由几何关系可知

l= d+s1即l=v·t + v′t ⑤
  联立②③④⑤解得:

  【小结】 对本题物理过程分析的关键,是要弄清子弹射向靶的过程中,子弹与船运动的关系,而这一关系如果能用图5-5所示的几何图形加以描述,则很容易找出子弹与船间的相对运动关系。可见利用运动的过程草图,帮助我们分析类似较为复杂的运动关系问题,是大有益处的。  
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网