ÌâÄ¿ÄÚÈÝ
17£®Èçͼ¼×Ëùʾ£¬Ïà¾àºÜ½üÊúÖ±·ÅÖõÄƽÐаåµçÈÝÆ÷£¬A¡¢BÁ½¼«°åÖÐÐĸ÷¿ªÓÐһС¿×£¬¿¿½üA¼«°åС¿×ÓÐÒ»´¦µç×ÓǹF£¬µç×ÓǹÄܹ»³ÖÐø¾ùÔȵØÏòA¡¢B¼«°åÄÚ·¢Éä³ö³õËÙ¶ÈΪv0µç×Ó£¬µç×ÓµÄÖÊÁ¿Îªm¡¢µçÁ¿Îªe£®ÔÚA¡¢BÁ½°åÖ®¼ä¼ÓÉÏͼÒÒËùʾµÄ½»±äµçѹ£¬ÆäÖÐ0£¼k£¼1£¬U0=$\frac{m{{v}_{0}}^{2}}{6e}$£»t=0ʱA°åµçÊƸßÓÚB°åµçÊÆ£®½ô¿¿B°åˮƽ·ÅÖõÄC¡¢D¼«°å¼äµÄµç³¡µçѹҲµÈÓÚU0£¬°å³¤ÎªL£¬Á½°å¼ä¾àΪd£¬¾àC¡¢D¼«°åÓÒ¶Ë$\frac{L}{2}$´¦´¹Ö±·ÅÖúܴóµÄÓ«¹âÆÁPQ£®²»¼Æµç×ÓµÄÖØÁ¦ºÍËüÃÇÖ®¼äµÄÏ໥×÷Ó㬵ç×ÓÔÚµçÈÝÆ÷ABÖеÄÔ˶¯Ê±¼ä¿ÉÒÔºöÂÔ²»¼Æ£®£¨1£©ÔÚ0-Tʱ¼äÄÚ£¬Ó«¹âÆÁÉÏÓÐÁ½¸öλÖûᷢ¹â£¬ÊÔÇóÕâÁ½¸ö·¢¹âµãÖ®¼äµÄ¾àÀ룮
£¨2£©Ö»µ÷ÕûC¡¢D¼«°åµÄ¼ä¾à£¨ÈÔÒÔÐéÏßΪ¶Ô³ÆÖᣩ£¬ÒªÊ¹Ó«¹âÆÁÉÏÖ»³öÏÖÒ»¸ö¹âµã£¬¼«°å¼ä¾àÓ¦Âú×ãʲôҪÇó£¿
£¨3£©³·È¥Æ«×ªµç³¡ºÍÓ«¹âÆÁ£¬µ±kÈ¡Ç¡µ±µÄÊýÖµ£¬Ê¹ÔÚ0-kTºÍkT-TÁ½¶Îʱ¼äÄÚ·¢ÉäµÄµç×ÓÊøÔÚÒÔºóÔ˶¯ÖеÄijһʱ¿ÌÈ«²¿Öصþ£¨²»¿¼Âǵç×èµÄÅöײ£©£¬ÇókÖµ£®
·ÖÎö £¨1£©¶ÔÖ±Ïß¼ÓËÙ¹ý³Ì¸ù¾Ý¶¯Äܶ¨ÀíÁÐʽÇóÔÚ0-kT ÓëkT-Tʱ¼äÄÚÉä³öB°åµç×ÓµÄËٶȣ»ÔÚ0-kTʱ¼äÄÚ£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³öµç×Ó´©³öB°åºóµÄËٶȣ¬ÔÚƫתµç³¡ÖУ¬µç×Ó×öÀàƽÅ×Ô˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½µÃµ½Æ«×ª¾àÀ룮¸ù¾ÝÍÆÂÛ£ºµç×ÓÉä³öƫתµç³¡ºó£¬ºÃÏñ´Ó¡°ÖеãÉä³ö¡±£¬µÃµ½´òÔÚÓ«¹âÆÁÉϵÄ×ø±ê£®ÔÙÔËÓÃͬÑùµÄ·½·¨Çó³öÔÚkT-T ʱ¼äÄÚ£¬µç×Ó´òÔÚÓ«¹âÆÁÉϵÄ×ø±ê£¬¼´¿ÉÇóµÃÕâÁ½¸ö·¢¹âµãÖ®¼äµÄ¾àÀ룻
£¨2£©¿¼Âǵ½ÁÙ½çÌõ¼þ£¬µ±¼«°å¼ä¾àΪd¡äʱ£¬µç×Ó¸Õ´Óƫת¼«°å±ßÔµ·É³ö£¬Ó«¹âÆÁÉÏÖ»³öÏÖÒ»¸ö¹âµã£¬ÓÉÉÏÌâ½á¹ûÇó³ö¼«°å¼ä¾àÓ¦Âú×ãʲôҪ
£¨3£©ÒªÇóÔÚijһʱ¿ÌÐγɾùÔÈ·Ö²¼µÄÒ»¶Îµç×ÓÊø£¬Ç°ºóÁ½¶Îµç×ÓÊøµÄ³¤¶È±ØÐëÏàµÈ£¬·Ö±ðµÃµ½µç×ÓÊø³¤¶ÈµÄ±í´ïʽ£¬¸ù¾ÝÏàµÈ¹Øϵ¼´¿ÉÇóµÃk£®
½â´ð ½â£º£¨1£©µç×Ó¾¹ýµçÈÝÆ÷Äڵĵ糡ºó£¬ËÙ¶ÈÒª·¢Éú±ä»¯£¬ÉèÔÚ0-kTʱ¼äÄÚ£¬´©³öB°åºóËÙ¶ÈΪ¦Í1£¬kT-T ʱ¼äÄÚÉä³öB °åµç×ÓµÄËٶȦÍ2
¾Ý¶¯Äܶ¨ÀíÓУº
-eU0=$\frac{1}{2}$m${v}_{1}^{2}$-$\frac{1}{2}m{v}_{0}^{2}$
eU0=$\frac{1}{2}$m${v}_{2}^{2}$-$\frac{1}{2}$m${v}_{0}^{2}$
½«U0=$\frac{m{{v}_{0}}^{2}}{6e}$´úÈëÉÏʽ£¬µÃ£º
¦Í1=2$\sqrt{\frac{e{U}_{0}}{m}}$£¬v2=2$\sqrt{\frac{2e{U}_{0}}{m}}$
ÔÚ0-kTʱ¼äÄÚÉä³ö °åµç×ÓÔÚƫתµç³¡ÖУ¬µç×ÓµÄÔ˶¯Ê±¼ä£ºt1=$\frac{L}{{v}_{1}}$
²àÒÆÁ¿£ºy1=$\frac{1}{2}$$a{t}_{1}^{2}$=$\frac{e{U}_{0}{L}^{2}}{2md{v}_{1}^{2}}$
ÁªÁ¢µÃ£ºy1=$\frac{{L}^{2}}{8d}$
´òÔÚÓ«¹âÆÁÉϵÄ×ø±êΪ Y1¡ä=2y1=$\frac{{L}^{2}}{4d}$
ͬÀí¿ÉµÃÔÚkT-Tʱ¼äÄÚÉè´©³öB°åºóµç×Ó²àÒÆÁ¿£º
y2=$\frac{{L}^{2}}{16d}$
´òÔÚÓ«¹âÆÁÉϵÄ×ø±ê£ºY2¡ä=2y2=$\frac{{L}^{2}}{8d}$
¹ÊÁ½¸ö·¢¹âµãÖ®¼äµÄ¾àÀ룺
¡÷Y=Y1¡ä+Y2¡ä=$\frac{3{L}^{2}}{16d}$
£¨2£©¿¼Âǵ½ÁÙ½çÌõ¼þ£¬µ±¼«°å¼ä¾àΪd¡äʱ£¬µç×Ó¸Õ´Óƫת¼«°å±ßÔµ·É³ö£¬ÔòÓУº
$\frac{1}{2}$d¡ä=$\frac{1}{2}$a¡ät2£¬
ÓÖ a¡ä=$\frac{q{U}_{0}}{md¡ä}$£¬
t=$\frac{L}{v}$
ÕûÀíµÃ£ºd¡ä2=$\frac{e{U}_{0}{L}^{2}}{m{v}^{2}}$£®
¶ÔÓÚËÙ¶Èv1ʱ£¬ÓУºd1¡ä=$\sqrt{\frac{e{U}_{0}{L}^{2}}{m{v}_{1}^{2}}}$=$\frac{1}{2}$L£»
¶ÔÓÚËÙ¶Èv2ʱ£¬ÓУºd2¡ä=$\sqrt{\frac{e{U}_{0}{L}^{2}}{m{v}_{2}^{2}}}$=$\frac{\sqrt{2}}{4}$L£»
Ö»µ÷Õûƫתµç³¡¼«°åµÄ¼ä¾à£¨ÈÔÒÔÐéÏßΪ¶Ô³ÆÖᣩ£¬ÒªÊ¹Ó«¹âÆÁÉÏÖ»³öÏÖÒ»¸ö¹âµã£¬¼«°å¼ä¾àÓ¦Âú×㣺$\frac{1}{2}$L£¾d¡ä£¾$\frac{\sqrt{2}}{4}$L£»
£¨3£©ÒªÇóÔÚijһʱ¿ÌÐγɾùÔÈ·Ö²¼µÄÒ»¶Îµç×ÓÊø£¬Ç°ºóÁ½¶Îµç×ÓÊøµÄ³¤¶È±ØÐëÏàµÈ£¨ÇÒ¸ÕºÃÖصþ£©
µÚÒ»Êø³¤¶È£ºl1=¦Í1kT
µÚ¶þÊø³¤¶È£ºl2=¦Í2£¨T-kT£©
ÓÉl1=l2
½âµÃ£ºk=$\frac{\sqrt{2}}{2+\sqrt{2}}$=2-$\sqrt{2}$¡Ö0.59
´ð£º
£¨1£©ÕâÁ½¸ö·¢¹âµãÖ®¼äµÄ¾àÀëΪ$\frac{3{L}^{2}}{16d}$£®
£¨2£©ÔÚ0-Tʱ¼äÄÚ£¬Ó«¹âÆÁÉÏÓÐÁ½¸öλÖûᷢ¹â£¬ÕâÁ½¸ö·¢¹âµãÖ®¼äµÄ¾àÀëΪ$\frac{1}{2}$L£¾d¡ä£¾$\frac{\sqrt{2}}{4}$L£®
£¨3£©³·È¥Æ«×ªµç³¡¼°Ó«¹âÆÁ£¬µ±kÈ¡0.59ʱ£¬Ê¹ÔÚ0-Tʱ¼äÄÚͨ¹ýÁ˵çÈÝÆ÷B°åµÄËùÓеç×Ó£¬ÄÜÔÚijһʱ¿ÌÐγɾùÔÈ·Ö²¼µÄÒ»¶Îµç×ÓÊø£®
µãÆÀ ±¾ÌâÀûÓôøµçÁ£×ÓÔÚÔÈÇ¿µç³¡ÖеÄÀàƽÅ×Ô˶¯¼°ÆäÏà¹Ø֪ʶÁз½³Ì½øÐнâ´ð£¬¹Ø¼üÒª·ÖÎö³öÁÙ½çÌõ¼þºÍÒþº¬µÄÌõ¼þ£®
A£® | ÈçÈ¡ÎÞÇîÔ¶´¦µçÊÆΪÁ㣬ÔòOµãµçÊÆΪÁ㣬³¡Ç¿²»ÎªÁã | |
B£® | O¡¢bÁ½µãµçÊƦÕb£¾¦ÕO£¬O¡¢bÁ½µã³¡Ç¿Eb£¼EO | |
C£® | ½«Ä³Ò»ÕýÊÔ̽µçºÉ´ÓbµãÑØÖ±ÏßÒƶ¯µ½cµã£¬µç³¡Á¦Ò»Ö±×öÕý¹¦ | |
D£® | ijһ¸ºÊÔ̽µçºÉÔÚ¸÷µãµÄµçÊÆÄÜ´óС¹ØϵΪ?a£¼?b£¼?O£¼?d£¼?c |
A£® | 4¦Ñ 4R | B£® | ¦Ñ 4R | C£® | 16¦Ñ 16R | D£® | ¦Ñ 16R |
A£® | ¸ßƵ³É·Ö»áÊäË͵½ÏÂÒ»¼¶µç· | |
B£® | µçÈÝÆ÷µÄ×÷ÓÃÊÇ´æ´¢µçÄÜ | |
C£® | µçÈÝÆ÷µÄ×÷ÓÃÊÇΪ¸ßƵ½»Á÷Ìṩͨ· |
A£® | 0.5s | B£® | $\sqrt{3}$s | C£® | 8s | D£® | £¨4+2$\sqrt{3}$£©s |
A£® | °ÚÇòÔ˶¯µÄ»Ø¸´Á¦ÊÇ°ÚÏßÀÁ¦ºÍÖØÁ¦µÄºÏÁ¦ÌṩµÄ | |
B£® | °ÚÇòÔÚÔ˶¯¹ý³ÌÖмÓËٶȵķ½ÏòʼÖÕÖ¸ÏòÔ²»¡µÄÔ²ÐÄ | |
C£® | °ÚÇò¾¹ýƽºâλÖÃʱ£¬ºÏÍâÁ¦²»ÎªÁã | |
D£® | °ÚÇòÔÚÔ˶¯¹ý³ÌÖмÓËٶȵķ½ÏòʼÖÕÖ¸ÏòƽºâλÖà |