题目内容
18.把一小球从离地面h=3.2m处,以一定的初速度水平抛出,小球着地的水平位移为x=4.8m,不计空气阻力,重力加速度g=10m/s2,求:(1)小球在空气飞行的时间
(2)小球抛出时的初速度大小
(3)小球落地时速度大小与方向.
分析 根据高度求出小球平抛运动的时间,结合水平位移和时间求出小球抛出时的初速度,根据竖直分速度的大小,结合平行四边形定则求出小球落地的速度大小和方向.
解答 解:(1)根据h=$\frac{1}{2}g{t}^{2}$得:t=$\sqrt{\frac{2h}{g}}=\sqrt{\frac{2×3.2}{10}}s=0.8s$.
(2)小球抛出时的初速度:${v}_{0}=\frac{x}{t}=\frac{4.8}{0.8}m/s=6m/s$.
(3)小球落地的竖直分速度为:vy=gt=10×0.8m/s=8m/s,
根据平行四边形定则知,小球落地的速度大小为:$v=\sqrt{{{v}_{0}}^{2}+{{v}_{y}}^{2}}=\sqrt{36+64}m/s=10m/s$,
小球速度方向与水平方向夹角的正切值为:$tanα=\frac{{v}_{y}}{{v}_{0}}=\frac{4}{3}$,
可知:α=53°.
答:(1)小球在空中飞行的时间为0.8s.
(2)小球抛出时的速度大小为6m/s.
(3)小球落地的速度大小为10m/s,方向与水平方向的夹角为53度.
点评 解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,结合运动学公式灵活求解,基础题.
练习册系列答案
相关题目
9.在研究天体运动中,发现万有引力定律和测出引力常量的科学家分别是( )
A. | 第谷、开普勒 | B. | 伽利略、迪卡尔 | C. | 牛顿、卡文迪许 | D. | 牛顿、开普勒 |
6.如图所示,紧贴圆筒内壁上的物体,随圆筒一起做匀速圆周运动,物体所需的向心力的来源为( )
A. | 重力 | B. | 弹力 | ||
C. | 静摩擦力 | D. | 重力与弹力的合力 |
13.卫星发射中心反射等质量的两颗圆轨道卫星,其中一颗卫星的轨道半径为2.8×107m.另一颗的轨道半径为4.2×107m,两卫星相比,前一颗卫星的( )
A. | 向心力较小 | B. | 向心加速度较大 | ||
C. | 绕地球的运动速率较大 | D. | 绕地球转动的周期较大 |
3.下列运动过程中,物体的机械能一定守恒的是( )
A. | 作匀速直线运动的物体 | B. | 沿斜面加速下滑的物块 | ||
C. | 做自由落体运动的小球 | D. | 竖直平面内做匀速圆周运动的物体 |
10.可用如图所示的实验装置来探究影响平行板电容器电容的因素,其中电容器左侧极板和静电剂外壳接地,电容器右侧极板与静电计金属球相连,在实验过程中电容器的带电量保持不变,则下列说法正确的是( )
A. | 将左侧极板向上平移一小段距离,静电计指针张角变小 | |
B. | 将左侧极板向右平移一小段距离,静电计指针张角变小 | |
C. | 将左侧极板向左平移一小段距离,静电计指针张角变小 | |
D. | 在极板间插入某种电介质,静电计指针张角变小 |
7.如图所示是远距离输电的示意图,变压器均为理想变压器,电站的输出电压U1=250V,输出功率P1=100kW,输电线路的总电阻R=8Ω,若输电线路上损耗的功率为总功率的5%,则下列说法正确的是( )
A. | 输电线路上损耗的功率为5kW | |
B. | 输电线路上的输电电流大小为20A | |
C. | 升压变压器的匝数比为$\frac{{n}_{1}}{{n}_{2}}$=$\frac{1}{16}$ | |
D. | 若降压变压器的匝数比为$\frac{{n}_{3}}{{n}_{4}}$=$\frac{190}{11}$,则用户获得的电压UA为220V |