ÌâÄ¿ÄÚÈÝ
11£®ÈçͼËùʾ£¬ÒÔMNΪ½çµÄÁ½ÔÈÇ¿´Å³¡£¬·½Ïò¾ù´¹Ö±Ö½ÃæÏòÀMN±ß½çÉÏ·½µÄ´Å¸ÐӦǿ¶ÈB1´óÓÚÏ·½µÄ´Å¸ÐӦǿ¶ÈB2£¬ÇÒB2=B0£¬Ò»ÖÊÁ¿Îªm£¬´øÕýµçºÉÇÒµçÁ¿ÎªqµÄÁ£×Ó´ÓOµãÑØͼʾ·½Ïò´¹Ö±MN½øÈë´Å³¡B1ÖУ¬²»¼ÆÁ£×ÓÖØÁ¦£®£¨1£©ÈôB1=2B0£¬Çó´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼ä£¬²¢»³öÁ£×ÓÔ˶¯¹ì¼££®
£¨2£©Çó´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄËùÓÐB1µÄ¿ÉÄÜÖµ¼°ÆäÔ˶¯¹ý³ÌËùÓõÄʱ¼ä£®
·ÖÎö £¨1£©Á£×ÓÔÚÁ½Öִų¡ÖÐÖ»ÊÜÂåÂ××ÈÁ¦£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª°ë¾¶${R}_{1}=\frac{1}{2}{R}_{2}$£¬¸ù¾Ý×óÊÖ¶¨Ôò£¬·ÖÎöÁ£×ÓÐýת·½Ïò£¬»³ö¹ì¼££¬¸ù¾Ý¹ì¼£È·¶¨Ê±¼äÓëÖÜÆڵĹØϵ£¬¼´¿ÉÇó³öÁ£×ÓÖØлص½OµãµÄʱ¼ä£»
£¨2£©¸ù¾ÝÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯»³öÔ˶¯¹ì¼££¬¸ù¾ÝÖÜÆÚÐÔÔ˶¯µÄÌص㣬ÕÒ³ö°ë¾¶¼äµÄ¹Øϵ£¬ÁªÁ¢·½³ÌÇó³öB1¿ÉÄÜÖµºÍ¶ÔÓ¦µÄÔ˶¯Ê±¼ä£»
½â´ð ½â£º£¨1£©ÉèÁ£×ÓÔڴų¡B1ºÍB2ÖÐÔ²ÖÜÔ˶¯µÄ°ë¾¶·Ö±ðΪR1¡¢R2£¬
Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£º$qvB=m\frac{{v}^{2}}{R}$£¬
½âµÃ£º${R}_{1}=\frac{mv}{q{B}_{1}}$£¬${R}_{2}=\frac{mv}{q{B}_{2}}$£¬
µ±B1=2B0=2B2ʱ£¬${R}_{1}=\frac{1}{2}{R}_{2}$£¬
¸ù¾Ý×óÊÖ¶¨ÔòÅжϿÉÒÔÖªµÀ£¬Á£×ÓÔڴų¡B1ÖÐÑØÄæʱÕë·½ÏòÐýת£¬Ôڴų¡B2ÖÐÑØ˳ʱÕë·½ÏòÐýת£¬
»³öÁ£×ÓÔ˶¯¹ì¼£Èçͼ¼×Ëùʾ£º
ͼ¼×
Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦ÐR}{v}=\frac{2¦Ðm}{qB}$£¬
Á£×ÓÔ˶¯µÄʱ¼äÓ¦°üº¬Á½²¿·Ö£¬ÔÚÉÏ°ë´Å³¡µÄ2¸ö°ëÖÜÆÚ£¬ÔÚÏ°ë´Å³¡µÄ°ë¸öÖÜÆÚ£®
´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼äΪ£º
${t}_{1}={T}_{1}+\frac{{T}_{2}}{2}=\frac{2¦Ðm}{2q{B}_{0}}+\frac{1}{2}¡Á\frac{2¦Ðm}{q{B}_{2}}=\frac{2¦Ðm}{q{B}_{0}}$
£¨2£©»³ö´øµçÁ£×ÓÔ˶¯µÄ¹ì¼£ÈçͼÒÒËùʾ£º
ͼÒÒ
ÉèA1A2=¡÷x£¬Ôò¡÷x=2R2-2R1£¬
µ±ÔÙÒ»´Î»Øµ½OµãʱӦÂú×㣺n¡÷x=2R1£¬
½âµÃ£º$\frac{{R}_{1}}{{R}_{2}}=\frac{n}{n+1}$£¬
ÓÉ$R=\frac{mv}{qB}$µÃ£º$B=\frac{mv}{qR}$£¬
¼´£º$\frac{{B}_{1}}{{B}_{2}}=\frac{n+1}{n}$£¬
¹Ê£º${B}_{1}=\frac{n+1}{n}{B}_{0}$£¨n=1£¬2£¬3£¬¡£©
¸ù¾ÝÔ˶¯¹ì¼££¬ÔÚMNÉÏ·½µÄB1´Å³¡ÖÐÓУ¨n+1£©¸ö°ëÔ²£¬Ô˶¯Ê±¼ä£º${t}_{1}=\frac{1}{2}£¨n+1£©{T}_{1}=\frac{n+1}{2}•\frac{2¦Ðm}{q{B}_{1}}=\frac{n¦Ðm}{q{B}_{0}}$
ÔÚMNÏ·½µÄB2´Å³¡ÖÐÓÐn¸ö°ëÔ²£¬Ô˶¯Ê±¼ä£º${t}_{2}=\frac{n}{2}{T}_{2}=\frac{n}{2}•\frac{2¦Ðm}{q{B}_{0}}=\frac{n¦Ðm}{q{B}_{0}}$
Ôò´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄÔ˶¯Ê±¼ä£º
$t={t}_{1}+{t}_{2}=\frac{2n¦Ðm}{q{B}_{0}}$£¨n=1£¬2£¬3£¬¡£©
´ð£º£¨1£©´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼ä$t=\frac{2¦Ðm}{q{B}_{0}}$£¬Ô˶¯¹ì¼£Èçͼ¼×£»
£¨2£©´øµçÁ£×ÓÄÜÔٴλص½OµãµÄB1µÄֵΪ${B}_{1}=\frac{n+1}{n}{B}_{0}$£¨n=1£¬2£¬3£¬¡£©
´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄÔ˶¯Ê±¼äΪ$t=\frac{2n¦Ðm}{q{B}_{0}}$£¨n=1£¬2£¬3£¬¡£©
µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÁ½¸ö²»Í¬´Å³¡ÇøÓò×ö½»ÌæÔ²ÖÜÔ˶¯µÄÎÊÌ⣬×ۺϿ¼²é´øµçÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÏà¹Ø֪ʶ¼°×óÊÖ¶¨Ôò£¬×¼È·»³öÔ˶¯¹ì¼£Í¼Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£»ÆäÖеڶþÎʲ»½öÒªÇóÄÜ׼ȷ»³öÔ˶¯¹ì¼££¬¶øÇÒÒª´ÓÔ˶¯¹ì¼£ÖÐÕÒ³öÔ˶¯µÄ¹æÂÉ£¬¶ÔÄÜÁ¦ÒªÇó½Ï¸ß£®
A£® | СµÆÅÝAÖð½¥±äÁÁ | B£® | СµÆÅÝBÖ𽥱䰵 | ||
C£® | СµÆÅÝCÖ𽥱䰵 | D£® | Èý¸öСµÆÅݶ¼Öð½¥±äÁÁ |
A£® | t2ÊÇÏß¿òÈ«²¿½øÈë´Å³¡Ë²¼ä£¬t4ÊÇÏß¿òÈ«²¿À뿪´Å³¡Ë²¼ä | |
B£® | ´Óbc±ß½øÈë´Å³¡ÆðÒ»Ö±µ½ad±ßÀ뿪´Å³¡ÎªÖ¹£¬¸ÐÓ¦µçÁ÷Ëù×öµÄ¹¦ÎªmgS | |
C£® | v1µÄ´óС¿ÉÄÜΪ$\frac{mgR}{{B}^{2}{L}^{2}}$ | |
D£® | Ïß¿ò´©³ö´Å³¡¹ý³ÌÖÐÁ÷¾Ïß¿òºá½ØÃæµÄµçºÉÁ¿±ÈÏß¿ò½øÈë´Å³¡¹ý³ÌÖÐÁ÷¾¿òºá½ØÃæµÄµçºÉÁ¿¶à |
¹ÒÔÚÏðƤÉþ϶˵Ĺ³Âë¸öÊý | ÏðƤÉþ϶˵Ä×ø±ê£¨X/mm£© | |
¼× | ÒÒ | |
1 | 216.5 | 216.5 |
2 | 246.7 | 232.0 |
3 | 284.0 | 246.5 |
4 | 335.0 | 264.2 |
5 | 394.5 | 281.3 |
6 | 462.0 | 301.0 |
£¨2£©ÒÒͬѧµÄÊý¾Ý¸ü·ûºÏʵÑéÒªÇ󣨼׻òÒÒ£©£®