ÌâÄ¿ÄÚÈÝ

11£®ÈçͼËùʾ£¬ÒÔMNΪ½çµÄÁ½ÔÈÇ¿´Å³¡£¬·½Ïò¾ù´¹Ö±Ö½ÃæÏòÀMN±ß½çÉÏ·½µÄ´Å¸ÐӦǿ¶ÈB1´óÓÚÏ·½µÄ´Å¸ÐӦǿ¶ÈB2£¬ÇÒB2=B0£¬Ò»ÖÊÁ¿Îªm£¬´øÕýµçºÉÇÒµçÁ¿ÎªqµÄÁ£×Ó´ÓOµãÑØͼʾ·½Ïò´¹Ö±MN½øÈë´Å³¡B1ÖУ¬²»¼ÆÁ£×ÓÖØÁ¦£®
£¨1£©ÈôB1=2B0£¬Çó´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼ä£¬²¢»­³öÁ£×ÓÔ˶¯¹ì¼££®
£¨2£©Çó´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄËùÓÐB1µÄ¿ÉÄÜÖµ¼°ÆäÔ˶¯¹ý³ÌËùÓõÄʱ¼ä£®

·ÖÎö £¨1£©Á£×ÓÔÚÁ½Öִų¡ÖÐÖ»ÊÜÂåÂ××ÈÁ¦£¬×öÔÈËÙÔ²ÖÜÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ¿ÉÖª°ë¾¶${R}_{1}=\frac{1}{2}{R}_{2}$£¬¸ù¾Ý×óÊÖ¶¨Ôò£¬·ÖÎöÁ£×ÓÐýת·½Ïò£¬»­³ö¹ì¼££¬¸ù¾Ý¹ì¼£È·¶¨Ê±¼äÓëÖÜÆڵĹØϵ£¬¼´¿ÉÇó³öÁ£×ÓÖØлص½OµãµÄʱ¼ä£»
£¨2£©¸ù¾ÝÁ£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯»­³öÔ˶¯¹ì¼££¬¸ù¾ÝÖÜÆÚÐÔÔ˶¯µÄÌص㣬ÕÒ³ö°ë¾¶¼äµÄ¹Øϵ£¬ÁªÁ¢·½³ÌÇó³öB1¿ÉÄÜÖµºÍ¶ÔÓ¦µÄÔ˶¯Ê±¼ä£»

½â´ð ½â£º£¨1£©ÉèÁ£×ÓÔڴų¡B1ºÍB2ÖÐÔ²ÖÜÔ˶¯µÄ°ë¾¶·Ö±ðΪR1¡¢R2£¬
               Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉÅ£¶ÙµÚ¶þ¶¨ÂÉ£º$qvB=m\frac{{v}^{2}}{R}$£¬
               ½âµÃ£º${R}_{1}=\frac{mv}{q{B}_{1}}$£¬${R}_{2}=\frac{mv}{q{B}_{2}}$£¬
               µ±B1=2B0=2B2ʱ£¬${R}_{1}=\frac{1}{2}{R}_{2}$£¬
                ¸ù¾Ý×óÊÖ¶¨ÔòÅжϿÉÒÔÖªµÀ£¬Á£×ÓÔڴų¡B1ÖÐÑØÄæʱÕë·½ÏòÐýת£¬Ôڴų¡B2ÖÐÑØ˳ʱÕë·½ÏòÐýת£¬
                »­³öÁ£×ÓÔ˶¯¹ì¼£Èçͼ¼×Ëùʾ£º
            
                                        ͼ¼×
             Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦ÐR}{v}=\frac{2¦Ðm}{qB}$£¬
              Á£×ÓÔ˶¯µÄʱ¼äÓ¦°üº¬Á½²¿·Ö£¬ÔÚÉÏ°ë´Å³¡µÄ2¸ö°ëÖÜÆÚ£¬ÔÚÏ°ë´Å³¡µÄ°ë¸öÖÜÆÚ£®
              ´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼äΪ£º
               ${t}_{1}={T}_{1}+\frac{{T}_{2}}{2}=\frac{2¦Ðm}{2q{B}_{0}}+\frac{1}{2}¡Á\frac{2¦Ðm}{q{B}_{2}}=\frac{2¦Ðm}{q{B}_{0}}$
            £¨2£©»­³ö´øµçÁ£×ÓÔ˶¯µÄ¹ì¼£ÈçͼÒÒËùʾ£º
          
                                   ͼÒÒ
            ÉèA1A2=¡÷x£¬Ôò¡÷x=2R2-2R1£¬
            µ±ÔÙÒ»´Î»Øµ½OµãʱӦÂú×㣺n¡÷x=2R1£¬
            ½âµÃ£º$\frac{{R}_{1}}{{R}_{2}}=\frac{n}{n+1}$£¬
            ÓÉ$R=\frac{mv}{qB}$µÃ£º$B=\frac{mv}{qR}$£¬
            ¼´£º$\frac{{B}_{1}}{{B}_{2}}=\frac{n+1}{n}$£¬
            ¹Ê£º${B}_{1}=\frac{n+1}{n}{B}_{0}$£¨n=1£¬2£¬3£¬¡­£©
            ¸ù¾ÝÔ˶¯¹ì¼££¬ÔÚMNÉÏ·½µÄB1´Å³¡ÖÐÓУ¨n+1£©¸ö°ëÔ²£¬Ô˶¯Ê±¼ä£º${t}_{1}=\frac{1}{2}£¨n+1£©{T}_{1}=\frac{n+1}{2}•\frac{2¦Ðm}{q{B}_{1}}=\frac{n¦Ðm}{q{B}_{0}}$
            ÔÚMNÏ·½µÄB2´Å³¡ÖÐÓÐn¸ö°ëÔ²£¬Ô˶¯Ê±¼ä£º${t}_{2}=\frac{n}{2}{T}_{2}=\frac{n}{2}•\frac{2¦Ðm}{q{B}_{0}}=\frac{n¦Ðm}{q{B}_{0}}$
            Ôò´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄÔ˶¯Ê±¼ä£º
             $t={t}_{1}+{t}_{2}=\frac{2n¦Ðm}{q{B}_{0}}$£¨n=1£¬2£¬3£¬¡­£©
´ð£º£¨1£©´øµçÁ£×Ó´ÓOµã³ö·¢ÖÁÔٴλص½OµãËùÐèµÄʱ¼ä$t=\frac{2¦Ðm}{q{B}_{0}}$£¬Ô˶¯¹ì¼£Èçͼ¼×£»
      £¨2£©´øµçÁ£×ÓÄÜÔٴλص½OµãµÄB1µÄֵΪ${B}_{1}=\frac{n+1}{n}{B}_{0}$£¨n=1£¬2£¬3£¬¡­£©
              ´øµçÁ£×Ó´ÓOµã³ö·¢ºóÄÜÔٴλص½OµãµÄÔ˶¯Ê±¼äΪ$t=\frac{2n¦Ðm}{q{B}_{0}}$£¨n=1£¬2£¬3£¬¡­£©

µãÆÀ ±¾Ì⿼²é´øµçÁ£×ÓÔÚÁ½¸ö²»Í¬´Å³¡ÇøÓò×ö½»ÌæÔ²ÖÜÔ˶¯µÄÎÊÌ⣬×ۺϿ¼²é´øµçÁ£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄÏà¹Ø֪ʶ¼°×óÊÖ¶¨Ôò£¬×¼È·»­³öÔ˶¯¹ì¼£Í¼Êǽâ¾öÎÊÌâµÄ¹Ø¼ü£»ÆäÖеڶþÎʲ»½öÒªÇóÄÜ׼ȷ»­³öÔ˶¯¹ì¼££¬¶øÇÒÒª´ÓÔ˶¯¹ì¼£ÖÐÕÒ³öÔ˶¯µÄ¹æÂÉ£¬¶ÔÄÜÁ¦ÒªÇó½Ï¸ß£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø