题目内容
10.一石块从楼顶自由落下.不计空气阻力,取 g=10m/s2.在石块下落的过程中( )A. | 第 1 s 内下落的高度为 1 m | B. | 第 1 s 内下落的高度为 5 m | ||
C. | 第 1 s 内下落的高度为 10 m | D. | 第 1 s 内下落的高度为 15 m |
分析 自由落体运动做初速度为0,加速度为g的匀加速直线运动,根据位移时间公式求出第1s内下落的位移
解答 解:1s内下降的高度为:h=$\frac{1}{2}g{t}^{2}=\frac{1}{2}×10×{1}^{2}m=5m$,故ACD错误,B正确;
故选:B
点评 解决本题的关键知道自由落体运动的运动规律,结合运动学公式灵活求解,基础题.
练习册系列答案
相关题目
20.一个${\;}_{92}^{235}$U原子核在中子的轰击下发生一种可能的裂变反映,其裂变方程为:${\;}_{92}^{235}$U+${\;}_{0}^{1}$n→X+${\;}_{38}^{90}$Sr+10${\;}_{0}^{1}$n,则下列叙述正确的是( )
A. | X原子核中含有86个中子 | |
B. | X原子核中含有136个核子 | |
C. | 因为裂变时释放巨大能量,所以裂变过程中能量不守恒 | |
D. | 因为裂变时出现质量亏损,所以生成物的总质量减少 |
1.如图所示,平行板电容器与直流电源连接,下极板接地,一带电油滴位于容器中的P点且处于静止状态,现将上极板竖直向上移动一小段距离,则( )
A. | P点电势将升高 | |
B. | 电容器的电容减小,极板带电量减小 | |
C. | 带电油滴将沿竖直方向向下运动 | |
D. | 带电油滴的电势能保持不变 |
18.如图所示,一小球以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回.已知反弹速度的大小是入射速度大小的$\frac{3}{4}$,则下列说法正确的是( )
A. | 小球在竖直方向下落的距离与在水平方向通过的距离的比为$\sqrt{3}$ | |
B. | 水平射出后经$\frac{{2v}_{0}}{g}$秒垂直撞到斜面 | |
C. | 在碰撞中小球的速度变化大小为$\frac{1}{2}$v0 | |
D. | 在碰撞中小球的速度变化大小为$\frac{7}{2}$v0 |
5.一只小船在静水中的速度为5m/s,它要渡过一条宽为50m的河,河水流速为4m/s,则( )
A. | 这只船过河位移可能为50 m | |
B. | 这只船过河时间可能为8s | |
C. | 若河水流速改变,船过河的最短时间一定不变 | |
D. | 若河水流速改变,船过河的最短位移一定不变 |
15.一物体作匀变速直线运动,某时刻速度的大小为4m/s,1s后速度的大小变10m/s.则在这1s内物体的( )
A. | 位移的大小可能小于4m | B. | 位移的大小可能大于10m | ||
C. | 加速度的大小一定等于6m/s2 | D. | 加速度的大小可能大于10m/s2 |
11.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从摩擦可以忽略的坡道顶端由静止滑下,进入光滑水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰好位于滑道的末端O点,A与B碰撞时间极短,碰撞后粘合在一起共同压缩弹簧至最短后被锁定,重力加速度为g,那么( )
A. | 运动过程中A和B组成的系统机械能守恒 | |
B. | 运动过程中A和B组成的系统动量守恒 | |
C. | A物体与B碰撞前的速度大小为$\sqrt{gh}$ | |
D. | A物体与B碰撞后的速度大小为$\frac{m_1}{{{m_1}+{m_2}}}\sqrt{2gh}$ |