题目内容

18.如图所示,光滑绝缘足够大水平桌面上方有以MN为水平分界线的方向相反的两个足够大竖直平行匀强磁场,磁感应强度的大小分别为B1=B、B2=2B,一个n=20匝的正方形导体线圈,边长为L,质量为m,总电阻为R,水平放置在桌面上,以初速度v垂直磁场方向从图中实线位置向右运动,当其运动到在每个磁场中各有一半的面积时,速度为$\frac{v}{2}$,则(  )
A.此过程中通过线圈横截面的电荷量为$\frac{30B{L}^{2}}{R}$
B.此过程中线圈克服安培力做的功为$\frac{3}{8}$mv2
C.此时线圈的加速度为$\frac{1800{B}^{2}{L}^{2}v}{mR}$
D.此时线圈的电功率为$\frac{9{B}^{2}{L}^{2}{v}^{2}}{4R}$

分析 根据法拉第电磁感应定律、欧姆定律和电量q=I△t相结合求解电量.求出此时线框中感应电动势,根据闭合电路的欧姆定律求解感应电流,线框所受的安培力的合力为F=2nBIa,再由牛顿第二定律求解加速度.根据能量守恒定律求解产生的电能.由P=I2R求解电功率.

解答 解:A、感应电动势为:E=$n•\frac{△Φ}{△t}$,感应电流为:I=$\frac{E}{R}$,电荷量为:q=I△t,解得:q=$n•\frac{△Φ}{R}$=$\frac{30B{L}^{2}}{R}$,故A正确.
B、由能量守恒定律得,此过程中回路产生的电能为:E=$\frac{1}{2}$mv2-$\frac{1}{2}$m($\frac{v}{2}$)2=$\frac{3}{8}$mv2,故B正确;
C、此时感应电动势为:E=2nBa$•\frac{v}{2}$+nBa$\frac{v}{2}$=$\frac{3}{2}$•nBav,线框电流为:I=$\frac{E}{R}$=$\frac{3nBav}{2R}$,由牛顿第二定律得:2nBIa+nBIa=ma
解得:a=$\frac{1800{B}^{2}{L}^{2}v}{mR}$,故C正确;
D、此时线框的电功率为:P=I2R=$\frac{9{{n}^{2}B}^{2}{L}^{2}{v}^{2}}{4R}$=$\frac{9{00B}^{2}{L}^{2}{v}^{2}}{R}$,故D错误.
故选:ABC.

点评 对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解.

练习册系列答案
相关题目
3.磁感应强度是描述磁场性质的重要物理量.不同物质周围存在的磁场强弱不同,测量磁感应强度的大小对于磁场的实际应用有着重要的物理意义.

(1)如图1所示为电流天平,可以用来测量匀强磁场的磁感应强度.它的右臂挂着匝数为n匝的矩形线圈,线圈的水平边长为l,处于匀强磁场内,磁场的方向与线圈平面垂直.当线圈中通过电流I时,调节砝码使两臂达到平衡,然后保持电流大小不变,使电流反向,这时需要在左盘中增加质量为m的砝码,才能使两臂再达到新的平衡.重力加速度为g,请利用题目所给的物理量,求出线圈所在位置处磁感应强度B的大小.
(2)磁场具有能量,磁场中单位体积所具有的能量叫做能量密度,其值为B2/2μ,式中B是磁感应强度,μ是磁导率,在空气中μ为一已知常量.请利用下面的操作推导条形磁铁磁极端面附近的磁感应强度B:用一根端面面积为A的条形磁铁吸住一相同面积的铁片P,再用力将铁片与磁铁缓慢拉开一段微小距离△l,并测出拉力F,如图2所示.因为距离很小,F可视为恒力.
(3)利用霍尔效应原理制造的磁强计可以用来测量磁场的磁感应强度.磁强计的原理如图3所示:将一体积为a×b×c的长方体导电材料,放在沿x轴正方向的匀强磁场中,已知材料中单位体积内参与导电的带电粒子数为n,带电粒子的电量为q,导电过程中,带电粒子所做的定向移动可认为是匀速运动.当材料中通有沿y轴正方向的电流I时,稳定后材料上下两表面间出现恒定的电势差U.
①请根据上述原理导出磁感应强度B的表达式.
②不同材料中单位体积内参与导电的带电粒子数n不同,请利用题目中所给的信息和所学知识分析制作磁强计应采用何种材料.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网