题目内容

【题目】如图甲所示,在真空中,半径为R的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场左侧有一对平行金属板M、N,两板间距离也为R,板长为L,板的中心线O1O2与磁场的圆心O在同一直线上.置于O1处的粒子发射源可连续以速度v0沿两板的中线O1O2发射电荷量为q、质量为m的带正电的粒子(不计粒子重力),MN两板不加电压时,粒子经磁场偏转后恰好从圆心O的正下方P点离开磁场;若在M、N板间加如图乙所示交变电压UMN , 交变电压的周期为 ,t=0时刻入射的粒子恰好贴着N板右侧射出.求

(1)匀强磁场的磁感应强度B的大小
(2)交变电压电压U0的值
(3)若粒子在磁场中运动的最长、最短时间分别为t1、t2 , 则它们的差值△t为多大?

【答案】
(1)解:当UMN=0时粒子沿O2O3方向射入磁场轨迹如图⊙O1,设其半径为R1

由几何关系得:R1=R

根据

解得:

答:匀强磁场的磁感应强度B的大小为


(2)解:在t=0时刻入射粒子满足:

解得:

答:交变电压电压U0的值为


(3)解:经分析可知所有粒子经电场后其速度仍为v0

(k=0,1,2,3.…)时刻入射的粒子贴M板平行射入磁场轨迹如⊙04,偏转角为α.

由几何知识可知四边形QOPO4为菱形,故α=120°

(k=0,1,2,3.…)时刻入射的粒子贴N板平行射入磁场轨迹如⊙05 偏转角为β.

由几何知识可知SOPO5为菱形,故β=60°

答:若粒子在磁场中运动的最长、最短时间分别为t1、t2,则它们的差值△t为


【解析】(1)根据几何关系求出粒子在磁场中运动的轨道半径,结合半径公式求出匀强磁场的磁感应强度大小.(2)根据偏转位移的大小,结合牛顿第二定律和运动学公式求出交变电压U0的值.(3)所有粒子经电场后其速度仍为v0,作出粒子在磁场中运动圆心角最大和最小时的轨迹图,结合周期公式进行求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网