ÌâÄ¿ÄÚÈÝ
5£®Èçͼ1ËùʾΪijͬѧ²â¶¨»¬¿éÓëбÃæ¼ä¶¯Ä¦²ÁÒòÊýµÄ×°Ö㬴òµã¼ÆʱÆ÷¹Ì¶¨ÔÚбÃæµÄ×îÉ϶ˣ¬ÈÃÒ»»¬¿éÍÏ×Å´©¹ý´òµã¼ÆʱÆ÷ÏÞλ¿×µÄÖ½´ø´ÓбÃæÉÏ»¬Ï£®Í¼2ÊǸÃͬѧʵÑéʱ´ò³öµÄijÌõÖ½´øµÄÒ»¶Î£®¢ÙÒÑÖª´òµã¼ÆʱÆ÷ʹÓõĽ»Á÷µçƵÂÊΪ50Hz£¬ÀûÓøÃÖ½´øÖвâ³öµÄÊý¾Ý¿ÉµÃ»¬¿éÏ»¬µÄ¼ÓËٶȴóСa=3.90m/s2£®
¢Ú´òµã¼ÆʱÆ÷´òBµãʱ£¬»¬¿éµÄËٶȴóСvB=1.67m/s£® £¨±£ÁôÈýλÓÐЧÊý×Ö£©
¢ÛΪÁ˲â³ö»¬¿éÓëбÃæ¼äµÄ¶¯Ä¦²ÁÒòÊý£¬¸ÃͬѧÒѾ²â³öбÃæµÄ³¤¶Èl¼°¸ß¶Èh£¬Çó¶¯Ä¦²ÁÒòÊýµÄ±í´ïʽΪ¦Ì=$\frac{gh-al}{g\sqrt{{l}^{2}-{h}^{2}}}$ £¨ÓÃl¡¢h¡¢g¼°¼ÓËÙ¶Èa±íʾ£©£®
¢ÜÓÃÕâÖÖ·½·¨²â¶¨µÄ¶¯Ä¦²ÁÒòÊýµÄÖµ´óÓÚ £¨Ìî¡°´óÓÚ¡±»òÕß¡°Ð¡ÓÚ¡±£©Õæʵֵ£¬ÒýÆðÎó²îµÄÔÒòÊÇÔÚʵÑéÖн«ÕñÕë¶ÔÖ½´øµÄĦ²ÁÁ¦¼°¿ÕÆø¶Ô»¬¿éµÄ×èÁ¦¼ÆÈëбÃæ¶Ô»¬¿éµÄĦ²ÁÁ¦£®
·ÖÎö ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬²ÉÓÃa=$\frac{¡÷x}{{t}^{2}}$Çó½â¼ÓËٶȣ¬
¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÒ»¶Î¹ý³ÌÖмäʱ¿ÌËٶȵÈÓÚƽ¾ùËÙ¶ÈÇó½âBµãËٶȣ¬
¶Ô»¬¿é½øÐÐÊÜÁ¦·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɽâ¾öÎÊÌ⣬²¢¸ù¾Ý¶¯Ä¦²ÁÒòÊý±í´ïʽ£¬¼´¿É·ÖÎö½âµÃ£®
½â´ð ½â£º¢ÙÓÉͼÒÒÖеÄÖ½´ø¿ÉÖªÏàÁÚµÄ2¸ö¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôt=2¡Á0.02s=0.04s£¬
¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛa=$\frac{¡÷x}{{t}^{2}}$=$\frac{{x}_{DG}-{x}_{AD}}{{T}^{2}}$=$\frac{£¨0.0947+0.0885+0.0824£©-£¨0.076+0.0698+0.0637£©}{£¨6¡Á0.02£©^{2}}$=3.90m/s2£®
¢Ú¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄÒ»¶Î¹ý³ÌÖмäʱ¿ÌËٶȵÈÓÚƽ¾ùËٶȵãº
vB=$\frac{{x}_{AC}}{{t}_{AC}}$=$\frac{0.0698+0.0637}{4¡Á0.02}$=1.67m/s
¢Û¶ÔС³µ½øÐÐÊÜÁ¦·ÖÎö£¬Ð¡³µÊÜÖØÁ¦¡¢Ö§³ÖÁ¦¡¢×èÁ¦£®
½«ÖØÁ¦ÑØбÃæºÍ´¹Ö±Ð±Ãæ·Ö½â£¬ÉèбÃæÇã½ÇΪ¦È£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵãº
FºÏ=mgsin¦È-f=ma
ÔòÓÐf=mgsin¦È-ma£¬
¸ÃͬѧÒѾ²â³öбÃæµÄ³¤¶Èl¼°¸ß¶Èh£¬¼´sin¦È=$\frac{h}{l}$£¬¶øcos¦È=$\frac{\sqrt{{l}^{2}-{h}^{2}}}{l}$£¬
¶øf=¦ÌN
ÔòÓУ¬¶¯Ä¦²ÁÒòÊýµÄ±í´ïʽΪ¦Ì=$\frac{gh-al}{g\sqrt{{l}^{2}-{h}^{2}}}$£®
¢Ü¸ù¾ÝÉÏÃæ·ÖÎö£¬ÇóµÃ×èÁ¦£¬¼´ÎªÐ±ÃæĦ²Á×èÁ¦£¬Ö½´øÊܵ½µÄ×èÁ¦£¬¼°¿ÕÆø×èÁ¦£»
ËùÒÔ¶¯Ä¦²ÁÒòÊýµÄÖµ´óÓÚÕæʵֵ£¬ÔÒòÊÇÔÚʵÑéÖн«ÕñÕë¶ÔÖ½´øµÄĦ²ÁÁ¦¼°¿ÕÆø¶Ô»¬¿éµÄ×èÁ¦¼ÆÈëбÃæ¶Ô»¬¿éµÄĦ²ÁÁ¦£»
¹Ê´ð°¸Îª£º¢Ù3.90£¨3.80¡«4.00£©£»¢Ú1.67£»¢Û$\frac{gh-al}{g\sqrt{{l}^{2}-{h}^{2}}}$£» ¢Ü´óÓÚ£¬ÔÚʵÑéÖн«ÕñÕë¶ÔÖ½´øµÄĦ²ÁÁ¦¼°¿ÕÆø¶Ô»¬¿éµÄ×èÁ¦¼ÆÈëбÃæ¶Ô»¬¿éµÄĦ²ÁÁ¦£®
µãÆÀ Äܹ»ÖªµÀÏàÁڵļÆÊýµãÖ®¼äµÄʱ¼ä¼ä¸ô£®Äܹ»°ÑÖ½´øµÄÎÊÌâ½áºÏ¶¯Á¦Ñ§ÖªÊ¶ÔËÓýâ¾öÎÊÌ⣮
×¢ÒⵥλµÄ»»ËãºÍÓÐЧÊý×ֵı£Áô£¬Í¬Ê±×¢ÒâÎó²î·ÖÎö²úÉúÔÒòÊÇ·ÖÎöÎó²îµÄÈëÊֵ㣮
¾àÀë | d1 | d2 | d3 |
²âÁ¿Öµ/cm | 1.20 | 5.40 | 12.02 |
A£® | ¹âµç¹ÜÒõ¼«²ÄÁϵÄÒݳö¹¦Îª4.5eV | |
B£® | µçÁ÷¼ÆʾÊýÈÔȻΪ0 | |
C£® | ¹âµç×ÓµÄ×î´ó³õ¶¯ÄÜÒ»¶¨±ä´ó | |
D£® | Èô»»Óùâ×ÓÄÜÁ¿Îª9.5eVµÄ¹âÕÕÉäÒõ¼«£¬Í¬Ê±½«»¬Æ¬PÏò×óÒƶ¯ÉÙÐí£¬µçÁ÷¼ÆʾÊýÒ»¶¨²»Îª0 |
A£® | ÂäµØʱËٶȴóСºÍ·½Ïò | B£® | ÂäµØλÒÆ´óСºÍ·½Ïò | ||
C£® | ˮƽλÒÆ | D£® | ÏÂÂä¸ß¶È |
A£® | $\sqrt{{a}^{3}}$£º$\sqrt{b}$ | B£® | $\sqrt{a}$£º$\sqrt{{b}^{3}}$ | C£® | $\sqrt{b}$£º$\sqrt{{a}^{3}}$ | D£® | $\sqrt{{b}^{3}}$£º$\sqrt{a}$ |
A£® | U=Blv£¬CµãµçÊƸßÓÚDµãµçÊÆ | B£® | U=Blv£¬DµãµçÊƸßÓÚCµãµçÊÆ | ||
C£® | U=Bdv£¬CµãµçÊƸßÓÚDµãµçÊÆ | D£® | U=Bdv£¬DµãµçÊƸßÓÚCµãµçÊÆ |
A£® | ÍâÁ¦¶ÔÎïÌåAËù×ö×ܹ¦µÄ¾ø¶ÔÖµµÈÓÚEk | |
B£® | ÎïÌåA¿Ë·þĦ²Á×èÁ¦×öµÄ¹¦µÈÓÚEk | |
C£® | ϵͳ¿Ë·þĦ²Á×èÁ¦×öµÄ¹¦¿ÉÄܵÈÓÚϵͳµÄ×ܶ¯ÄÜ2Ek | |
D£® | ϵͳ¿Ë·þĦ²Á×èÁ¦×öµÄ¹¦Ò»¶¨µÈÓÚϵͳ»úеÄܵļõСÁ¿ |
A£® | ÏòÐÄÁ¦´óСһ¶¨Ïàͬ | B£® | Ô˶¯ÏßËٶȴóСÏàͬ | ||
C£® | Ô˶¯½ÇËٶȴóСÏàͬ | D£® | ÏòÐļÓËٶȴóСÏàͬ |