题目内容
如图所示,竖直平面内一光滑水平轨道左边与墙壁对接,右边与一足够高的1/4光滑圆弧轨道相连,木块A、B静置于光滑水平轨道上,A、B质量分别为1.5kg和0.5kg。现让A以6m/s的速度水平向左运动,之后与墙壁碰撞,碰撞时间为0.3s,碰后速度大小变为4m/s。当A与B碰撞后会立即粘在一起运动,已知g=10m/s2 求:
①A与墙壁碰撞过程中,墙壁对小球平均作用力F;
②A、B滑上圆弧轨道的最大高度。
①方向水平向②h=0.45m
解析试题分析:①设水平向右为正方向,当A与墙壁碰撞时根据动能定理有:;解得方向水平向左
②当A与B碰撞时,设碰撞后两物体的速度为v,根据动量守恒定律有
A B在光滑圆形轨道上升时,机械能守恒,由机械能守恒定律得
,解得h=0.45m
考点:动量守恒定律的应用
练习册系列答案
相关题目
在光滑的水平面上有两个在同一直线上相向运动的小球,其中甲球的质量m1=2kg,乙球的质量m2=1kg,规定向右为正方向,碰撞前后乙球的速度随时间变化情况如图所示。已知两球发生正碰后,甲球静止不动,碰撞时间极短,则碰前甲球速度的大小和方向分别为( )
A.0.5m/s,向右 | B.0.5m/s,向左 |
C.1.5m/s,向左 | D.1.5m/s,向右 |