题目内容
两颗人造卫星A、B绕地球作圆周运动,轨道半径之比为RA:RB=1:4,则( )
A、VA:VB=2:1 | B、ωA:ωB=4:1 | C、TA:TB=1:8 | D、anA:anB=2:1 |
分析:根据万有引力提供向心力G
=m
=m ω 2r=m
r=ma,解得v=
,ω =
,T=2π
,a=
.再根据各个量与半径的关系计算比值即可.
Mm |
r2 |
v2 |
r |
4π2 |
T2 |
|
|
|
GM |
r2 |
解答:解:A、根据万有引力提供向心力G
=m
,得v=
,可知
=
=
=
,故A正确.
B、根据万有引力提供向心力G
=m ω 2r,得ω =
,可知
=
=
=
,故B错误.
C、根据万有引力提供向心力G
=m
r,得T=2π
,可知
=
=
=
,故C正确.
D、根据万有引力提供向心力G
=ma,得a=
,可知
=
=
,故D错误.
故选:AC.
Mm |
r2 |
v2 |
r |
|
vA |
vB |
|
|
2 |
1 |
B、根据万有引力提供向心力G
Mm |
r2 |
|
ω A |
ω B |
|
(
|
8 |
1 |
C、根据万有引力提供向心力G
Mm |
r2 |
4π2 |
T2 |
|
TA |
TB |
|
(
|
1 |
8 |
D、根据万有引力提供向心力G
Mm |
r2 |
GM |
r2 |
anA |
anB |
rB2 |
rA2 |
16 |
1 |
故选:AC.
点评:本题要掌握万有引力提供向心力G
=m
=m ω 2r=m
r=ma,并能解得v=
,ω =
,T=2π
,a=
.根据各个量与半径的关系计算其比值.
Mm |
r2 |
v2 |
r |
4π2 |
T2 |
|
|
|
GM |
r2 |
练习册系列答案
相关题目
两颗人造卫星A、B绕地球做圆周运动,周期之比为T1:T2=8:1,则它们的轨道半径之比和运行速率之比分别为( )
A、R1:R2=4:1,v1:v2=1:2 | B、R1:R2=1:4,v1:v2=2:l | C、R1:R2=1:4,v1:v2=1:2 | D、R1:R2=4:1,v1:v2=2:1 |