题目内容
两颗人造卫星A、B绕地球做圆周运动,周期之比为TA:TB=1:8,则轨道半径之比和运动速率之比分别为( )
分析:根据人造卫星的万有引力等于向心力,列式求出线速度、角速度、周期和向心力的表达式进行讨论即可.
解答:解:人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m、轨道半径为r、地球质量为M,有
F=F向
F=G
F向=m
=mω2r=m(
)2r
因而
G
=m
=mω2r=m(
)2r=ma
解得
v=
①
T=
=2π
②
ω=
③
a=
④
由②式可得卫星的运动周期与轨道半径的立方的平方根成正比,由TA:TB=1:8可得轨道半径RA:RB=1:4,然后再由①式v=
得线速度VA:VB=2:1.所以正确答案为C项.
故选D.
F=F向
F=G
Mm |
r2 |
F向=m
v2 |
r |
2π |
T |
因而
G
Mm |
r2 |
v2 |
r |
2π |
T |
解得
v=
|
T=
2πr |
v |
|
ω=
|
a=
GM |
r2 |
由②式可得卫星的运动周期与轨道半径的立方的平方根成正比,由TA:TB=1:8可得轨道半径RA:RB=1:4,然后再由①式v=
|
故选D.
点评:本题关键抓住万有引力提供向心力,列式求解出线速度、角速度、周期和向心力的表达式,再进行讨论.
练习册系列答案
相关题目
两颗人造卫星A、B绕地球做圆周运动,周期之比为T1:T2=8:1,则它们的轨道半径之比和运行速率之比分别为( )
A、R1:R2=4:1,v1:v2=1:2 | B、R1:R2=1:4,v1:v2=2:l | C、R1:R2=1:4,v1:v2=1:2 | D、R1:R2=4:1,v1:v2=2:1 |