题目内容

在“用单摆测定重力加速度”的实验中,将一单摆装置竖直悬于某一深度为h(未知)、开口竖直向下的固定小筒中(单摆的下部分露于筒外),如图甲所示。将悬线拉离平衡位置一个小角度后由静止释放,设单摆摆动过程中悬线不会碰到筒壁。如果本实验的长度测量工具只能测量出筒下端口到摆球球心之间的距离l,并通过改变l而测出对应的摆动周期T,再以T2为纵轴、l为横轴,作出T2 - l图象,则可以由此图象得出我们想要测量的物理量。

(1)下列工具中,本实验所需的测量工具有_________

A.时钟             B.秒表             C.天平             D.毫米刻度尺

(2)如果实验中所得到的T2 - l关系图象如图乙所示,那么真正的图象应该是abc中的________。

(3)由图象可知,小筒的深度h = _______cm;当地重力加速度g = _____m/s2π取3.14,计算结果保留三位有效数字)。

 

【答案】

(1)BD(2)a(2分)(3)30(2分),9.86(2分)

【解析】

试题分析:(1)要测量筒下端口到摆球球心之间的距离以及摆动的周期,所以需要的器材是毫米刻度尺和秒表.故B、D正确,A、C错误.故选BD.

(2)根据,图线应该是一条过原点的倾斜直线,但是因为时,实际摆长不为0,所以图象中时,周期不等于0.故选a

(3)当时,对应的位置是-30cm.可知小筒的深度为30cm.图线的斜率,所以

考点:用单摆测定重力加速度

点评:解决本题的关键掌握单摆的周期公式,以及会通过作T2-L图线求重力加速度.

 

练习册系列答案
相关题目
某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动到最低点开始计时且记数为1,到第n次经过最低点所用的时间内为t;在测量单摆的摆长时,先用毫米刻度尺测得悬挂后的摆线长(从悬点到摆球的最上端)为L,再用游标卡尺测得摆球的直径为d.
(1)该单摆在摆动过程中的周期为
2t
n-1
2t
n-1

(2)用上述物理量的符号写出求重力加速度的一般表达式g=
(n-1)2π2(2l+d)
2t2
(n-1)2π2(2l+d)
2t2

(3)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的
BD
BD

A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了
B.把n次摆动的时间误记为(n+1)次摆动的时间
C.以摆线长作为摆长来计算
D.以摆线长与摆球的直径之和作为摆长来计算
(4)为了提高实验精度,在实验中可改变几次摆长L并测出相应的周期T,从而得出一组对应的L与T的数据,再以L为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线的斜率k.则重力加速度g=
4π2
k
4π2
k
.(用k表示)若根据所得数据连成的直线的延长线没过坐标原点,而是与纵轴的正半轴相交于一点,则实验过程中可能存在的失误是
摆长漏加小球半径
摆长漏加小球半径
,因此失误,由图象求得的重力加速度的g
无影响
无影响
偏大,偏小,无影响)
某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆在摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动到最低点开始计时且记数为1,到第n次经过最低点所用的时间内为t;在测量单摆的摆长时,先用毫米刻度尺测得悬挂后的摆线长(从悬点到摆球的最上端)为L,再用游标卡尺测得摆球的直径为d.
(1)该单摆在摆动过程中的周期为
2t
n-1
2t
n-1

(2)用上述物理量的符号写出求重力加速度的一般表达式g=
(n-1)2π2(2l+d) 
2t2
(n-1)2π2(2l+d) 
2t2

(3)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的
BD
BD

A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了
B.把n次摆动的时间误记为(n+1)次摆动的时间
C.以摆线长作为摆长来计算
D.以摆线长与摆球的直径之和作为摆长来计算
(4)某同学在做“用单摆测定重力加速度”的实验中,用秒表测单摆完成40次全振动的时间如图所示,则单摆的周期为
2.005
2.005
s.
(5)为了提高实验精度,在实验中可改变几次摆长L并测出相应的周期T,从而得出一组对应的L与T的数据,再以L为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线的斜率k.则重力加速度g=
4π2
k
4π2
k
.(用k表示)若根据所得数据连成的直线的延长线没过坐标原点,而是与纵轴的正半轴相交于一点,则实验过程中可能存在的失误是
摆长漏加小球半径
摆长漏加小球半径
,因此失误,由图象求得的重力加速度的g
无影响
无影响
偏大,偏小,无影响)
某实验小组在进行“用单摆测定重力加速度”的实验中,已知单摆摆动过程中的摆角小于5°;在测量单摆的周期时,从单摆运动到最低点开始计时且记数为1,到第n次经过最低点所用的时间内为t;在测量单摆的摆长时,先用毫米刻度尺测得悬挂后的摆线长(从悬点到摆球的最上端)为L,再用游标卡尺测得摆球的直径为d.
(1)用上述物理量的符号写出求重力加速度的一般表达式g=
π2(n-1)2(L+
d
2
)
t2
π2(n-1)2(L+
d
2
)
t2

(2)实验结束后,某同学发现他测得的重力加速度的值总是偏大,其原因可能是下述原因中的
BD
BD

A.单摆的悬点未固定紧,振动中出现松动,使摆线增长了
B.把n次摆动的时间误记为(n+1)次摆动的时间
C.以摆线长作为摆长来计算
D.以摆线长与摆球的直径之和作为摆长来计算
(3)某同学在做“用单摆测定重力加速度”的实验中,用秒表测单摆完成40次全振动的时间如图所示,则单摆的周期为
1.995
1.995
s.
(4)为了提高实验精度,在实验中可改变几次摆长L并测出相应的周期T,从而得出一组对应的L与T的数据,再以L为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线的斜率k.则重力加速度g=
4π2
k
4π2
k
.(用k表示)若根据所得数据连成的直线的延长线没过坐标原点,而是与纵轴的正半轴相交于一点,则实验过程中可能存在的失误是
摆长漏加小球半径
摆长漏加小球半径
,因此失误,由图象求得的重力加速度的g
无影响
无影响
(偏大,偏小,无影响)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网