题目内容

如图所示,带电荷量为Q的正点电荷固定在倾角为30°的光滑绝缘斜面底部的C点,斜面上有A、B两点,且A、B和C在同一直线上,A和C相距为L,B为AC中点.现将一带电小球从A点由静止释放,当带电小球运动到B点时速度正好又为零,已知带电小球在A点处的加速度大小为
g
4
,静电力常量为k,求:
(1)小球运动到B点时的加速度大小.
(2)B和A两点间的电势差(用Q和L表示).

(1)根据牛顿第二定律和库仑定律得:
带电小球在A点时有:
mgsin 30°-k
Qq
L2
=maA
带电小球在B点时有:
k
Qq
(
L
2
)2
-mgsin 30°=maB
且aA=
g
4
,可解得:aB=
g
2

(2)由A点到B点应用动能定理得:
mgsin 30°?
L
2
-UBA?q=0
由mgsin 30°-k
Qq
L2
=m?aA=m
g
4

可得:
1
4
mg=k
Qq
L2

可求得:UBA=k
Q
L

答:
(1)小球运动到B点时的加速度大小为
g
2

(2)B和A两点间的电势差为k
Q
L
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网