ÌâÄ¿ÄÚÈÝ
1£®Ð¡ÕÅͬѧ´òËã²âÁ¿Ä³ÖÖÓɺϽð²ÄÁÏÖƳɵĽðÊôË¿µÄµç×èÂÊp£®´ý²â½ðÊôË¿µÄºá½ØÃæΪԲÐΣ®ÊµÑéÆ÷²ÄÓУººÁÃ׿̶ȳߡ¢ÂÝÐý²â΢Æ÷¡¢µçѹ±í£¨ÄÚ×èÔ¼¼¸Ç§Å·£©¡¢µçÁ÷±í£¨ÄÚ×èÔ¼¼¸Å·£©¡¢»¬Ïß±ä×èÆ÷¡¢µçÔ´¡¢µç¼ü¡¢´ý²â½ðÊôË¿¼°µ¼ÏßÈô¸É£®£¨1£©ÓúÁÃ׿̶ȳ߲âÁ¿Æ䳤¶È£¬ÓÃÂÝÐý²â΢Æ÷²âÁ¿ÆäÖ±¾¶£¬½á¹û·Ö±ðÈçͼ1ºÍͼ2Ëùʾ£®ÓÉͼ¿ÉÖªÆ䳤¶ÈL=59.40cm£¬Ö±¾¶ÎªD=0.434mm£»
£¨2£©¸Ãͬѧ¼Æ»®ÒªÓÃͼÏó·¨Çó³öµç×èµÄ×èÖµ£¬ÒªÇóµçѹ´Ó0¿ªÊ¼±ä»¯£®Ç뽫ͼ3ËùʾʵÎïµç·ͼÖÐËùȱ²¿·Ö²¹È«£º
£¨3£©Í¼4ÊÇʵÑéÖвâµÃµÄ6×éµçÁ÷I¡¢µçѹI¡¢µçѹUµÄÖµÃèµÄµã£¬ÓÉͼÇó³öµÄµç×èÖµR=5.95¦¸£¨±£Áô3λÓÐЧÊý×Ö£©£º
£¨4£©Ð´³ö´ý²â½ðÊôË¿µÄµç×èÂÊpµÄ±í´ïʽ$\frac{¦ÐR{D}^{2}}{4L}$£¨ÓòâµÃµÄÎïÀíÁ¿µÄ·ûºÅ±íʾ£©£®
·ÖÎö £¨1£©ÓÉͼ¼×Ëùʾ¿Ì¶ÈÏßÈ·¶¨¿Ì¶È³ßµÄ·Ö¶ÈÖµ£¬ÓÉͼ¼×¿ÉÖª£¬½ðÊôË¿µÄÒ»¸ö¶ËµãÓë¿Ì¶È³ßµÄÁã¿Ì¶ÈÏ߶ÔÆ룬Ôò½ðÊôË¿ÁíÒ»¶ËµãËù¶ÔÓ¦µÄ¿Ì¶È³ßµÄʾÊý¾ÍÊǽðÊôË¿µÄ³¤¶È£»
ÏȶÁÂÝÐý²â΢Æ÷µÄ¹Ì¶¨¿Ì¶È£¬È»ºóÔÙ¶Á¿É¶¯¿Ì¶È£¬¹Ì¶¨¿Ì¶È¼ÓÉϿɶ¯¿Ì¶ÈÓë0.01µÄ³Ë»ý¾ÍÊÇÂÝÐý²â΢Æ÷µÄ¶ÁÊý£®
£¨2£©¸ù¾Ýµç·ͼ·ÖÎöÇå³þµç·½á¹¹£¬È»ºó¸ù¾Ý¸÷µç·Ԫ¼þµÄÁ¬½Ó·½Ê½×÷³öʵÑéµç·ͼ£®
£¨3£©¸ù¾Ý×ø±êϵÖÐÃè³öµÄµã£¬ÓÃÒ»ÌõÖ±Ï߰Ѿ¡¿ÉÄܶàµÄµãÁ¬½ÓÆðÀ´£¬²»ÔÚͬһֱÏßÉϵĵãÒª¶Ô³ÆµØ·Ö²¼ÔÚÖ±ÏßÁ½²à£¬¸ÃÖ±Ïß¾ÍÊÇU-IͼÏó£®²¢¸ù¾ÝU-IͼÏó£¬ÓÉÅ·Ä·¶¨ÂÉÇó³öµç×è×èÖµ£®
£¨4£©ÓÉÅ·Ä·¶¨ÂÉÇó³öµç×è×èÖµ£¬È»ºóÓɵç×趨ÂÉÇó³öµç×èÂʵıí´ïʽ£®
½â´ð ½â£º£¨1£©ÓÉͼ¼×¿ÉÖª£¬¿Ì¶È³ßµÄ·Ö¶ÈÖµÊÇ1mm£¬µç×èË¿µÄ³¤¶ÈÊÇ59.40cm£»ÓÉͼÒÒ¿ÉÖª£¬ÂÝÐý²â΢Æ÷µÄ¹Ì¶¨¿Ì¶ÈʾÊýÊÇ0mm£¬¿É¶¯¿Ì¶ÈʾÊýÊÇ43.4£¬ÔòÂÝÐý²â΢Æ÷µÄ¶ÁÊýÊÇ0mm+43.4¡Á0.01mm=0.434mm£»
£¨2£©ÒòËù²âµç×è½ÏС£¬ÔòµçÁ÷±í²ÉÓÃÍâ½Ó·¨£¬
ÓÉÓÚÒªÇóµçѹ´Ó0¿ªÊ¼±ä»¯£¬Ôò»¬¶¯±ä×èÆ÷·Öѹʽ½Ó·¨£¬
Èçͼ1Ëùʾ£º
ͼ1£®
£¨3£©Ãèµã·¨×÷ͼ£¬U-IͼÏóÈçͼ2Ëùʾ£º
ͼ2£®
ÓÉU-IͼÏó¿ÉµÃ£¬µç×èË¿µç×裺R=$\frac{2.5}{0.42}$=5.95¦¸£®
£¨4£©µç×èË¿µÄºá½ØÃ棺S=¦Ðr2=¦Ð£¨$\frac{D}{2}$£©2£¬
ÒòR=¦Ñ $\frac{L}{S}$£¬
ËùÒÔ½ðÊôË¿µÄµç×èÂÊ£º¦Ñ=$\frac{RS}{L}$=$\frac{¦ÐR{D}^{2}}{4L}$£®
¹Ê´ð°¸Îª£º£¨1£©59.40£¬0.434£»£¨2£©Èçͼ1Ëùʾ£»£¨3£©5.95£»£¨4£©$\frac{¦ÐR{D}^{2}}{4L}$£®
µãÆÀ ±¾Ì⿼²éÁ˿̶ȳßÓëÂÝÐý²â΢Æ÷µÄ¶ÁÊý¡¢µç·¹ÊÕÏ·ÖÎö¡¢×÷ʵÑéµç·ͼ¡¢×÷U-IͼÏó¡¢Çóµç×è¡¢Çóµç×èÂʵıí´ïʽµÈÎÊÌ⣬ÊÇʵÑéµÄ³£¿¼ÎÊÌ⣬һ¶¨ÒªÕÆÎÕ£»±¾ÌâÉæ¼°µÄ֪ʶµã½Ï¶à£¬µ«ÄѶȲ»ÊǺܴó£¬ÊìÁ·ÕÆÎÕ»ù´¡ÖªÊ¶¼´¿ÉÕýÈ·½âÌ⣮
A£® | ÕâЩÎïÌåÔ˶¯µÄ½ÇËÙ¶ÈÏàͬ | B£® | ÕâЩÎïÌåÔ˶¯µÄÏßËÙ¶ÈÏàͬ | ||
C£® | ÕâЩÎïÌåÔ˶¯ÏòÐļÓËÙ¶ÈÏàͬ | D£® | ÕâЩÎïÌåÔ˶¯µÄÏßËٶȴóСÏàµÈ |
A£® | ÔÚ²£Á§ÖÐb¹âµÄÈ«·´ÉäÁÙ½ç½Ç½ÏС | B£® | ²£Á§¶Ôa¹âµÄÕÛÉäÂʽϴó | ||
C£® | ÔÚÕæ¿ÕÖÐa¹â²¨³¤½Ï¶Ì | D£® | ÔÚ²£Á§ÖÐb¹â´«²¥ËٶȽϴó |
X£¨m£© | 0.200 | 0.400 | 0.600 | 0.700 | 0.900 | 0.900 |
t£¨s£© | 0.088 | 0.189 | 0.311 | 0.385 | 0.473 | 0.600 |
$\frac{X}{t}$£¨m/s£© | 2.27 | 2.12 | 1.93 | 1.82 | 1.69 | 1.50 |
£¨1£©¸ù¾Ý±íÖÐËù¸øµÄÊý¾Ý£¬ÔÚͼ2µÄ×ø±êÖ½ÉÏ»³ö$\frac{X}{t}$-tͼÏߣ»
£¨2£©¸ù¾ÝËù»³öµÄ$\frac{X}{t}$-tͼÏߣ¬µÃ³ö»¬¿é¼ÓËٶȵĴóСΪa=3.0m/s2£»
£¨3£©»¬¿éÓëˮƽ³¤Ä¾°åÖ®¼äµÄ¶¯Ä¦²ÁÒòÊý=0.31£®
A£® | ÎïÌå½ö½öÔÚÖØÁ¦×÷ÓÃϵÄÔ˶¯ | |
B£® | ÎïÌåÖ»ÊÜÖØÁ¦¶øÇÒÓɾ²Ö¹¿ªÊ¼µÄÔ˶¯ | |
C£® | ÎïÌåÒÔÖØÁ¦¼ÓËÙ¶ÈËù×öµÄ³õËÙΪ0µÄÔȼÓËÙÔ˶¯ | |
D£® | Âú×ãÇ°n sÄÚλÒÆÖ®±ÈΪs1£ºs2£ºs3£º¡£ºsn=12£º22£º32£º¡£ºn2µÄÔ˶¯ |
A£® | T=2¦Ð$\sqrt{\frac{R^3}{GM}}$ | B£® | T=2¦Ð$\sqrt{\frac{{2{R^3}}}{GM}}$ | C£® | T=2¦Ð$\sqrt{\frac{{3{R^3}}}{GM}}$ | D£® | T=¦Ð$\sqrt{\frac{R^3}{GM}}$ |