ÌâÄ¿ÄÚÈÝ
13£®ÔÚÓÃÈçͼװÖá°ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò¡±ÊµÑéʱ£º¢Ù³ýÒÑÓеÄÆ÷²Ä£¨·½Ä¾°å¡¢°×Ö½¡¢µ¯»É³Ó¡¢Ï¸ÉþÌ×£¨Á½¸ö£©¡¢ÏðƤÌõ¡¢¿Ì¶È³ß¡¢Á¿½ÇÆ÷¡¢Í¼¶¤ºÍǦ±Ê£©Í⣬»¹±ØÐëÓÐÈý½Ç°å£®
¢ÚͬѧÃÇÔÚ²Ù×÷¹ý³ÌÖÐÓÐÈçÏÂÒéÂÛ£¬ÆäÖжԼõСʵÑéÎó²îÓÐÒæµÄ˵·¨ÊÇAD£®£¨Ìî×Öĸ´úºÅ£©
A£®µ¯»É³Ó¡¢Ï¸Éþ¡¢ÏðƤÌõ¶¼Ó¦Óëľ°åƽÐÐ
B£®Á½Ï¸ÉþÖ®¼äµÄ¼Ð½ÇÔ½´óÔ½ºÃ
C£®ÓÃÁ½µ¯»É³ÓͬʱÀϸÉþʱÁ½µ¯»É³ÓʾÊýÖ®²îÓ¦¾¡¿ÉÄÜ´ó
D£®ÀÏðƤÌõµÄϸÉþÒª³¤Ð©£¬±ê¼ÇͬһϸÉþ·½ÏòµÄÁ½µãҪԶЩ
¢Ûµ¯»É²âÁ¦¼ÆµÄÖ¸ÕëÈçͼËùʾ£¬ÓÉͼ¿ÉÖªÀÁ¦µÄ´óСΪ4.00N£®
¢ÜÔÚʵÑéÖУ¬Èç¹û½«Ï¸ÉþÒ²»»³ÉÏðƤ½î£¬ÄÇôʵÑé½á¹ûÊÇ·ñ»á·¢Éú±ä»¯£¿´ð£º²»±ä£®£¨Ñ¡Ìî¡°±ä¡±»ò¡°²»±ä¡±£©
·ÖÎö ×ö̽¾¿¹²µãÁ¦ºÏ³ÉµÄ¹æÂÉʵÑ飺ÎÒÃÇÊÇÈÃÁ½¸öÁ¦ÀÏðƤÌõºÍÒ»¸öÁ¦ÀÏðƤÌõ²úÉúµÄ×÷ÓÃЧ¹ûÏàͬ£¬²â³öÁ½¸öÁ¦µÄ´óСºÍ·½ÏòÒÔ¼°Ò»¸öÁ¦µÄ´óСºÍ·½Ïò£¬ÓÃÁ¦µÄͼʾ»³öÕâÈý¸öÁ¦£¬ÓÃƽÐÐËıßÐÎ×ö³öÁ½¸öÁ¦µÄºÏÁ¦µÄÀíÂÛÖµ£¬ºÍÄÇÒ»¸öÁ¦£¨Êµ¼ÊÖµ£©½øÐбȽϣ®ÓÃƽÐÐËıßÐλ³öÀ´µÄÊÇÀíÂÛÖµ£¬ºÍÏðƤ½îͬÏßµÄÄǸöÊÇʵ¼ÊÖµ£®
½â´ð ½â£º£¨1£©×ö̽¾¿¹²µãÁ¦ºÏ³ÉµÄ¹æÂÉʵÑ飺ÎÒÃÇÊÇÈÃÁ½¸öÁ¦ÀÏðƤÌõºÍÒ»¸öÁ¦ÀÏðƤÌõ²úÉúµÄ×÷ÓÃЧ¹ûÏàͬ£¬²â³öÁ½¸öÁ¦µÄ´óСºÍ·½ÏòÒÔ¼°Ò»¸öÁ¦µÄ´óСºÍ·½Ïò£¬ÓÃÁ¦µÄͼʾ»³öÕâÈý¸öÁ¦£¬ÓÃƽÐÐËıßÐÎ×ö³öÁ½¸öÁ¦µÄºÏÁ¦µÄÀíÂÛÖµ£¬ºÍÄÇÒ»¸öÁ¦½øÐбȽϣ®
ËùÒÔÎÒÃÇÐèÒªµÄʵÑéÆ÷²ÄÓУº·½Ä¾°å£¨¹Ì¶¨°×Ö½£©£¬°×Ö½£¨¼Ç¼·½Ïò»Í¼£©¡¢¿Ì¶È³ß£¨Ñ¡±ê¶È£©¡¢ÉþÌ×£¨µ¯»É³ÓÀÏðƤÌõ£©¡¢µ¯»É²âÁ¦¼Æ£¨²âÁ¦µÄ´óС£©¡¢Í¼¶¤£¨¹Ì¶¨°×Ö½£©¡¢Èý½Ç°å£¨»Æ½ÐÐËıßÐΣ©£¬ÏðƤÌõ£¨ÈÃÁ¦²úÉúÏàͬµÄ×÷ÓÃЧ¹ûµÄ£©£®
ËùÒÔ»¹±ØÐëÓÐÈý½Ç°å£®
£¨2£©A¡¢²âÁ¿Á¦µÄʵÑéÒªÇó¾¡Á¿×¼È·£¬ÎªÁ˼õСʵÑéÖÐÒòĦ²ÁÔì³ÉµÄÎó²î£¬²Ù×÷ÖÐÒªÇ󵯻ɳӡ¢Ï¸Éþ¡¢ÏðƤÌõ¶¼Ó¦Óëľ°åƽÐУ¬¹ÊAÕýÈ·£»
B¡¢Á½ÌõϸÉþµÄ¼Ð½Ç²»ÊÇÔ½´óÔ½ºÃ£¬ÒÔ·½±ã×÷ƽÐÐËıßÐÎΪÒË£¬¹ÊB´íÎó£»
C¡¢Óõ¯»É³ÓͬʱÀϸÉþʱ£¬ÀÁ¦²»ÄÜÌ«Ì«£¬Ò²²»ÄÜ̫С£®¹ÊC´íÎó£»
D¡¢ÎªÁ˸ü¼Ó׼ȷµÄ¼Ç¼Á¦µÄ·½Ïò£¬ÀÏðƤÌõµÄϸÉþÒª³¤Ð©£¬±ê¼ÇͬһϸÉþ·½ÏòµÄÁ½µãҪԶЩ£¬¹ÊDÕýÈ·£®
¹ÊÑ¡£ºAD
£¨3£©µ¯»É²âÁ¦¼ÆµÄÖ¸ÕëÈçͼËùʾ£¬ÓÉͼ¿ÉÖªÀÁ¦µÄ´óСΪ4.00 N£®
£¨4£©Èç¹û½«Ï¸ÏßÒ²»»³ÉÏðƤ½î£¬Ö»Òª½«½áµãÀµ½ÏàͬµÄλÖã¬ÊµÑé½á¹û²»»á·¢Éú±ä»¯£®
¹Ê´ð°¸Îª£º¢ÙÈý½Ç°å ¢ÚAD ¢Û4.00 ¢Ü²»±ä
µãÆÀ ÔÚ¡°ÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò¡±ÊµÑéÖУ¬ÎÒÃÇÒªÖªµÀ·ÖÁ¦ºÍºÏÁ¦µÄЧ¹ûÊǵÈͬµÄ£¬ÕâÒªÇóͬѧÃǶÔÓÚ»ù´¡ÖªÊ¶ÒªÊìÁ·ÕÆÎÕ²¢ÄÜÕýÈ·Ó¦Ó㬼ÓÇ¿¶Ô»ù´¡ÊµÑéÀí½â£®
A£® | ÔÚt=$\frac{T}{4}$ʱ£¬´Å³¡·½ÏòÓëÏßȦƽÃæƽÐÐ | |
B£® | ÔÚt=$\frac{T}{2}$ʱ£¬ÏßȦÖеĴÅͨÁ¿±ä»¯ÂÊ×î´ó | |
C£® | ÏßȦÖе綯ÊƵÄ˲ʱֵe=Emsin£¨$\frac{2¦Ðt}{T}$£© | |
D£® | ÈôÏßȦתËÙÔö´óΪÔÀ´µÄ2±¶£¬ÔòÏßȦÖе綯ÊƱäΪÔÀ´µÄ4±¶ |
A£® | nT | B£® | $\frac{T}{n}$ | C£® | T$\sqrt{n}$ | D£® | $\frac{T}{\sqrt{n}}$ |
A£® | ¸ÃÁв¨ÑØxÖḺ·½Ïò´«²¥ | |
B£® | ¸ÃÁв¨µÄ²¨ËÙ´óСΪ1m/s | |
C£® | Èô´Ë²¨Óöµ½ÁíÒ»Áмòгºá¶É²¢·¢ÉúÎȶ¨¸ÉÉæÏÖÏó£¬ÔòËùÓöµ½µÄ²¨µÄƵÂÊΪ0.4Hz | |
D£® | Èô¸Ã²¨Óöµ½Ò»ÕÏ°Îï·¢ÉúÁËÃ÷ÏÔµÄÑÜÉäÏÖÏó£¬Ôò¸ÃÕÏ°ÎïµÄ³ß´çºÍ40cm²î²»¶à»ò¸üС | |
E£® | ´Ó¸Ãʱ¿ÌÆð£¬ÔÙ¾¹ý0.4sµÄʱ¼ä£¬ÖʵãAͨ¹ýµÄ·³ÌΪ40cm |
A£® | µç×èR2µÄ¹¦ÂÊÏÈÔö´óºó¼õС | |
B£® | µçÔ´µÄÊä³ö¹¦ÂÊÏÈÔö´óºó¼õС | |
C£® | µçѹ±íʾÊýºÍµçÁ÷±íʾÊýÖ®±ÈÖð½¥Ôö´ó | |
D£® | µçѹ±íʾÊýµÄ±ä»¯Á¿ºÍµçÁ÷±íʾÊýµÄ±ä»¯Á¿Ö®±È±£³Ö²»±ä |
A£® | $\frac{v_1}{v_2}=\frac{r}{R}£»\frac{a_1}{a_2}=\frac{r}{R}$ | B£® | $\frac{v_1}{v_2}=\sqrt{\frac{r}{R}}£»\frac{a_1}{a_2}=\frac{r^2}{R^2}$ | ||
C£® | $\frac{v_1}{v_2}=\sqrt{\frac{R}{r}}£»\frac{a_1}{a_2}=\frac{R^2}{r^2}$ | D£® | $\frac{v_1}{v_2}=\frac{R}{r}£»\frac{a_1}{a_2}=\frac{R}{r}$ |
A£® | µ¯»É³ÓµÄ¶ÁÊý½«±äС | B£® | ľ¿éAÈÔ´¦ÓÚ¾²Ö¹×´Ì¬ | ||
C£® | ľ¿éA¶Ô×ÀÃæµÄĦ²ÁÁ¦²»±ä | D£® | ľ¿éAËùÊܵĺÏÁ¦½«Òª±ä´ó |