题目内容

某颗人造地球卫星在距地面高度为h的圆形轨道上绕地球飞行,其运动可视为匀速圆周运动。已知地球半径为R,地面附近的重力加速度为g。
请推导:(1)卫星在圆形轨道上运行速度  (2)运行周期的表达式。

(1);(2)

解析试题分析:(1)地球对人造卫星的万有引力提供人造卫星向心力    
解得:
又在地球表面有一质量为m0的物体,GM=R2g
解得v=  (1分)
(2)      
考点: 万有引力定律

练习册系列答案
相关题目

“重力探矿”是常用的探测石油矿藏的方法之一。其原理可简述如下:如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为;石油密度远小于,可将上述球形区域视为空腔。如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏差。重力加速度在原坚直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”。为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象。已知引力常数为G。

(1)“重力探矿”利用了“割补法”原理:如图所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?
(2)设球形空腔体积为V,球心深度为d(远小于地球半径),=x,利用“割补法”原理:如果将近地表的球形空腔填满密度为的岩石,则该地区重力加速度便回到正常值.因此,重力加速度反常值可通过填充后的球形区域对Q处物体m产生的附加引力来计算,式中M是填充岩石后球形区域的质量,求空腔所引起的Q点处的重力加速度反常值在OP方向上的分量)
(3)若在水平地面上半径L的范围内发现:重力加速度反常值在(k>1)(为常数)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网