ÌâÄ¿ÄÚÈÝ
2£®ÈçͼËùʾ£¬ÔÚÇã½Ç¦È=37¡ãµÄбÃæ϶ËÓÃÒ»Á¢Öù¹Ì¶¨Ò»Çᵯ»É£¬µ¯»ÉÉ϶˷ÅÒ»ÖÊÁ¿m=2kg£¬´øµçÁ¿q=+2¡Á10-5cµÄÎï¿é£¨µ¯»ÉδÓëÎï¿éÏàÁ¬½Ó£©£®Îï¿é¾²Ö¹ÓÚбÃæµÄAµãʱ£¬µ¯»É±»Ò»Ï¸ÏßËø¶¨£¬µ¯ÐÔÊÆÄÜEP=54J£®BµãΪµ¯»ÉµÄÔ³¤Î»Öã¬AB¶ÎбÃæ¹â»¬£¬AB³¤¶ÈL1=1.5m£»BC¶Î´Ö²Ú£¬BC³¤¶ÈL2=1.6m£®Ä³Ê±¿Ì¼ô¶ÏϸÏߣ¬Îï¿é½«ÑØбÃæÉÏ»¬£¬µ½´ïCµãºó£¬Í¨¹ýÒ»Ô²»¡¹ìµÀ£¨Ö»¸Ä±äÎï¿éµÄËٶȷ½Ïò¶ø²»¸Ä±ä´óС£©½øÈëˮƽ¹ìµÀCD²¿·ÖÔ˶¯£¬CDµÄ³¤¶ÈL3=14m£®ÔÚˮƽ¹ìµÀCDÉÏÓÐһˮƽ·½Ïò³É45¡ãбÏòÓÒÏ·½µÄÔÈÇ¿µç³¡£¬Îï¿éÀ뿪Dºó´Ó¸ßΪH=4.05mµÄƽ̨·É³ö£¬Ç¡ºÃ´ÓI´¦ÎÞÅöײµØ½øÈë´Ö²ÚµÄÔ²»¡¹ìµÀÄÚ£¬ÒÑÖª¹ýI´¦µÄ°ë¾¶ºÍÊúÖ±·½Ïò¼Ð½ÇΪ¦Â=37¡ã£¬×îºóÑØÔ²»¡¹ìµÀÔ˶¯²¢¸ÕºÃÄÜͨ¹ý¹ìµÀµÄ×î¸ßµãJ£®Îï¿éºÍBC¡¢CD¶ÎµÄ¶¯Ä¦²ÁÒòÊý¦Ì=0.5£¬Ô²°å¹ìµÀµÄ°ë¾¶R=1m£®£¨Îï¿é¿ÉÊÓΪÖʵ㣬Îï¿é´øµçÁ¿Ê¼ÖÕ²»±ä£¬g=10m/s2£©Ç󣺣¨1£©Îï¿éÔÚBCÉÏÔ˶¯µÄ¼ÓËٶȴóСÊǶàÉÙ£¿
£¨2£©CD²¿·Öµç³¡Ç¿¶ÈEµÄ´óСÊǶàÉÙ£¿£¨½á¹û¿ÉÓøùºÅ±íʾ£©
£¨3£©´ÓBµ½JµÄ¹ý³ÌÖÐĦ²ÁÉúÈÈÊǶàÉÙ£¿
·ÖÎö £¨1£©¶ÔÎï¿é½øÐÐÊÜÁ¦·ÖÎö£¬½áºÏÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó³öÎï¿éµÄ¼ÓËٶȣ»
£¨2£©ÏÈÓɹ¦ÄܹØϵÇó³öÎï¿éµ½´ïCµãµÄËٶȣ»È»ºó·ÖÎöÎï¿éµ½´ïIµãʱµÄËٶȣ¬ÓÉÊúÖ±·½ÏòµÄÔ˶¯Çó³öÎï¿éµ½´ïIʱµÄÊúÖ±·½ÏòµÄ·ÖËٶȣ¬È»ºóÓÉËٶȵĺϳÉÓë·Ö½âÇó³öˮƽ·½ÏòµÄ·ÖËٶȣ¬¼´ÎªÎï¿éµ½´ïDʱµÄËٶȣ®
×îºó½áºÏÎï¿éÔÚˮƽ·½ÏòµÄÊÜÁ¦·ÖÎöÓ붯Äܶ¨Àí¼´¿ÉÇó³öµç³¡Ç¿¶ÈµÄ´óС£»
£¨3£©ÏÈ·Ö±ðÇó³öÎï¿éÔÚBC¶ÎºÍÔÚCD¶Î¿Ë·þĦ²ÁÁ¦×öµÄ¹¦£»È»ºóÓÉÊúÖ±·½ÏòµÄÔ²ÖÜÔ˶¯µÄÌصãÇó³öÎï¿éÔÚJµãµÄËٶȣ¬Óɹ¦ÄܹØϵÇó³öÎï¿éÔÚIµ½JµÄ¹ý³ÌÖп˷þĦ²ÁÁ¦×öµÄ¹¦£¬×îºóÇóºÍ¼´¿É£®
½â´ð ½â£º£¨1£©Îï¿éÔÚBC¶ÎÊܵ½ÖØÁ¦¡¢Ö§³ÖÁ¦ºÍĦ²ÁÁ¦µÄ×÷Óã¬ÊÜÁ¦Èçͼ£¬Ôò£ºf1=¦Ìmgcos¦È=0.5¡Á2¡Á10¡Á0.8=8N
Îï¿éµÄ¼ÓËٶȣº$a=\frac{mgsin¦È+{f}_{1}}{m}$
´úÈëÊý¾ÝµÃ£ºa=10m/s2
£¨2£©Aµ½CµÄ¹ý³ÌÖе¯»ÉµÄµ¯Á¦×öÕý¹¦£¬ÖØÁ¦ÓëĦ²ÁÁ¦×ö¸º¹¦£¬Óɹ¦ÄܹØϵµÃ£º
${E}_{P}=mg£¨{L}_{1}+{L}_{2}£©cos¦È+f•{L}_{2}cos¦È+\frac{1}{2}m{v}_{C}^{2}$
´úÈëÊý¾ÝµÃ£ºvC=2m/s
Dµ½IµÄ¹ý³ÌÖУ¬Îï¿é×öƽÅ×Ô˶¯£¬ÊúÖ±·½Ïò£º${v}_{y}=\sqrt{2gH}=\sqrt{2¡Á4.05¡Á10}=9$m/s
ÑØˮƽ·½ÏòµÄ·ÖËٶȣº${v}_{x}=\frac{{v}_{y}}{tan¦È}=\frac{9}{tan37¡ã}=12$m/s
ÎïÌåµ½´ïIµãʱ£¬ÑØˮƽ·½ÏòµÄ·ÖËٶȼ´Îªµ½´ïDµãʱµÄËٶȣ¬ËùÒÔ£ºvD=vx=12m/s
Îï¿éÔÚCDÖ®¼äµÄÊÜÁ¦Èçͼ£¬Ôò£º${f}_{2}=¦Ì£¨mg+\frac{\sqrt{2}}{2}qE£©$
Cµ½DµÄ¹ý³ÌÖУ¬Óɶ¯Äܶ¨ÀíµÃ£º$\frac{\sqrt{2}}{2}qE•{L}_{3}-{f}_{2}{L}_{3}=\frac{1}{2}m{v}_{D}^{2}-\frac{1}{2}m{v}_{C}^{2}$
ÁªÁ¢ÒÔÉÏ·½³Ì£¬½âµÃ£º$E=2\sqrt{2}¡Á1{0}^{6}$N/C
£¨3£©Bµ½CµÄ¹ý³ÌÖп˷þĦ²ÁÁ¦×öµÄ¹¦£ºW1=f1L2
Cµ½DµÄ¹ý³ÌÖп˷þĦ²ÁÁ¦×öµÄ¹¦£ºW2=f2L3
Îï¿éµ½´ïIʱµÄËٶȣº${v}_{I}=\sqrt{{v}_{x}^{2}+{v}_{y}^{2}}=\sqrt{{9}^{2}+1{2}^{2}}=15$m/s
Îï¿éÇ¡ºÃ¹ýJµã£¬ÔòÔÚJµãʱÖØÁ¦Ç¡ºÃÌṩÏòÐÄÁ¦£¬Ôò£ºmg=$\frac{m{v}_{J}^{2}}{R}$
Iµ½JµÄ¹ý³ÌÖУ¬ÖØÁ¦ÓëĦ²ÁÁ¦×ö¹¦£¬Ôò£º$-mgR£¨1+cos¦È£©-{W}_{3}=\frac{1}{2}m{v}_{J}^{2}-\frac{1}{2}m{v}_{I}^{2}$
ÔÚ´ÓBµ½JµÄ¹ý³ÌÖÐĦ²ÁÉúÈÈ£ºQ=W1+W2+W3
ÁªÁ¢ÒÔÉÏ·½³Ì£¬´úÈëÊý¾Ý½âµÃ£ºQ=611.8J
´ð£º£¨1£©Îï¿éÔÚBCÉÏÔ˶¯µÄ¼ÓËٶȴóСÊÇ10m/s2£»£¨2£©CD²¿·Öµç³¡Ç¿¶ÈEµÄ´óСÊÇ$2\sqrt{2}$N/C£»£¨3£©´ÓBµ½JµÄ¹ý³ÌÖÐĦ²ÁÉúÈÈÊÇ611.8J£®
µãÆÀ ¿¼²éµ¯Á¦×÷¹¦Ó뵯ÐÔÊÆÄܱ仯¹Øϵ£¬ÖØÁ¦×ö¹¦ÓëÖØÁ¦ÊÆÄܱ仯µÄ¹Øϵ£¬Ä¦²ÁÁ¦×ö¹¦µ¼Öµ¯»ÉÓëÎï¿éµÄ»úеÄÜÔڱ仯£®²¢Ñ§»áÓÉÊÜÁ¦·ÖÎöÀ´È·¶¨Ô˶¯Çé¿ö£®
A£® | ÏòA¶ËÒƶ¯ | B£® | ÏòB¶ËÒƶ¯ | ||
C£® | ʼÖÕ²»¶¯ | D£® | ÒÔÉÏÈýÖÖÇé¿ö¶¼ÓпÉÄÜ |
A£® | A¡¢BÁ½µãµÄÏòÐļÓËٶȵķ½Ïò¶¼Ö¸ÏòÇòÐÄ0 | |
B£® | Óɹ«Ê½a=¦Ø2r¿ÉÖªaA£¼aB | |
C£® | Óɹ«Ê½a=$\frac{{v}^{2}}{r}$¿ÉÖªaA£¾aB | |
D£® | ÇòÃæÉÏA¡¢BÁ½µãÏßËٶȵĴóС¿ÉÄÜvA£¼vB£¬Ò²¿ÉÄÜvA£¾vB |