ÌâÄ¿ÄÚÈÝ
17£®ÈçͼËùʾ£¬Ë®Æ½·ÅÖõÄÈýÌõ¹â»¬Æ½ÐнðÊôµ¼¹ìa£¬b£¬c£¬Ïà¾à¾ùΪd=1m£¬µ¼¹ìa£¬c¼äºá¿çÒ»ÖÊÁ¿Îªm=1kgµÄ½ðÊô°ôMN£¬°ôÓëµ¼¹ìʼÖÕÁ¼ºÃ½Ó´¥£®°ôµÄµç×èr=2¦¸£¬µ¼¹ìµÄµç×èºöÂÔ²»¼Æ£®ÔÚµ¼¹ìb£¬c¼ä½ÓÒ»µç×èΪR=2¦¸µÄµÆÅÝ£¬µ¼¹ìac¼ä½ÓÒ»ÀíÏë·üÌØ±í£®Õû¸ö×°Ö÷ÅÔڴŸÐӦǿ¶ÈB=2TÔÈÇ¿´Å³¡ÖУ¬´Å³¡·½Ïò´¹Ö±µ¼¹ìƽÃæÏòÏ£®ÏÖ¶Ô°ôMNÊ©¼ÓһˮƽÏòÓÒµÄÀÁ¦F£¬Ê¹°ô´Ó¾²Ö¹¿ªÊ¼Ô˶¯£¬ÊÔÇó£ºÈôÊ©¼ÓµÄˮƽÍâÁ¦¹¦ÂʺãΪP=20W£¬¾Àút=1sʱ¼ä£¬°ôµÄËٶȴﵽ2m/s£¬ËæºóÁ¢¼´³·ÏûÊ©¼ÓµÄˮƽÍâÁ¦£¬ÔÚÕâÒÔºóµÄÔ˶¯¹ý³ÌÖаôÔÙÄÜ»¬¶¯µÄ×î´óλÒÆΪ¶àÉÙ£¿·ÖÎö ³·ÏûˮƽÍâÁ¦ºó½ðÊô°ô×ö±ä¼õËÙÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺͼÓËٶȵĶ¨Òåʽa=$\frac{¡÷v}{¡÷t}$½áºÏ£¬µÃµ½Ëٶȵı仯Á¿ÓëλÒƱ仯Á¿µÄ¹Øϵʽ£¬ÔÙÇóºÍ¼´¿ÉµÃ½â£®
½â´ð ½â£º³·ÏûˮƽÍâÁ¦ºó£¬Éè°ôµÄËÙ¶ÈΪvʱ¼ÓËÙ¶ÈΪa£¬È¡¼«¶Ìʱ¼ä¡÷tÑо¿£¬È¡ÏòÓÒΪÕý·½Ïò£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɵÃ
-BIL=ma
ÓÖI=$\frac{Bdv}{R+\frac{1}{2}r}$£¬a=$\frac{¡÷v}{¡÷t}$
ÁªÁ¢µÃ-$\frac{{B}^{2}{d}^{2}v}{R+\frac{1}{2}r}$=m•$\frac{¡÷v}{¡÷t}$
Ôò £¨-$\frac{{B}^{2}{d}^{2}v}{R+\frac{1}{2}r}$£©¡÷t=m•¡÷v
Á½±ßÇóºÍµÃ£º$\sum_{\;}^{\;}$£¨-$\frac{{B}^{2}{d}^{2}v}{R+\frac{1}{2}r}$£©¡÷t=$\sum_{\;}^{\;}$m•¡÷v
ʽÖÐv¡÷t=¡÷x£¬$\sum_{\;}^{\;}$v¡÷t=$\sum_{\;}^{\;}$¡÷x=x
ÔòµÃ-$\frac{{B}^{2}{d}^{2}x}{R+\frac{1}{2}r}$=m£¨0-v£©
´úÈëµÃ $\frac{{2}^{2}¡Á{1}^{2}¡Áx}{2+\frac{1}{2}¡Á2}$=1¡Á2
½âµÃ x=1.5m
´ð£º°ôÔÙÄÜ»¬¶¯µÄ×î´óλÒÆΪ1.5m£®
µãÆÀ ±¾ÌâÊdz·È¥Fºó°ô×öµÄÊDZä¼õËÙÖ±ÏßÔ˶¯£¬²»ÄÜÓÃÔ˶¯Ñ§¹«Ê½ÇóλÒÆ£¬¶øÒªÔËÓÃ΢Ԫ·¨Çó£¬ÆäÇÐÈë¿ÚÊǼÓËٶȵĶ¨Òåʽ£®
A£® | 3¦Ìmg | B£® | 4¦Ìmg | C£® | 5¦Ìmg | D£® | 6¦Ìmg |
A£® | µçÄÔÊܵ½µÄÖ§³ÖÁ¦±äС | B£® | µçÄÔÊܵ½µÄĦ²ÁÁ¦±ä´ó | ||
C£® | µçÄÔËùÊܵĺÏÁ¦±ä´ó | D£® | µçÄÔ¶Ôµ××ùµÄ×÷ÓÃÁ¦²»±ä |
A£® | 2£º1 | B£® | $\sqrt{3}$£º2 | C£® | $\sqrt{3}$£º1 | D£® | $\sqrt{3}$£º4 |