题目内容

10.如图甲所示,MN、PQ为间距L=0.5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计.导轨平面与水平面间的夹角θ=37°,NQ间连接有一个R=4Ω的电阻.有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T.将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好.现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行.(取g=10m/s2,sin37°=0.6,cos37°=0.8).求:

(1)金属棒与导轨间的动摩擦因数μ
(2)金属棒ab的电阻r以及cd离NQ的距离s
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度B应怎样随时间t变化(写出B与t的关系式).

分析 (1)当刚释放时,导体棒中没有感应电流,所以只受重力、支持力与静摩擦力,由牛顿第二定律可求出动摩擦因数.
(2)当金属棒速度稳定时,则受到重力、支持力、安培力与滑动摩擦力达到平衡,这样可以列出安培力公式,产生感应电动势的公式,再由闭合电路殴姆定律,列出平衡方程可求出金属棒的内阻,从而利用通过棒的电量来确定发生的距离.
(3)金属棒滑行至cd处的过程中,由动能定理可求出安培力做的功,而由于安培力做功导致电能转化为热能.
(4)要使金属棒中不产生感应电流,则穿过线框的磁通量不变.同时棒受到重力、支持力与滑动摩擦力做匀加速直线运动.从而可求出磁感应强度B应怎样随时间t变化的.

解答 解:(1)当v=0时,a=2m/s2
由牛顿第二定律得:mgsinθ-μmgcosθ=ma
μ=0.5       
(2)由图象可知:vm=2m/s  
当金属棒达到稳定速度时,有FA=B0IL;
且B0IL+μmgcosθ=mgsinθ
解得I=0.2A;
切割产生的感应电动势:E=B0Lv=1×0.5×2=1V;
因I=$\frac{E}{R+r}$
解得r=1Ω
电量为:q=$\overline{I}$t=n $\frac{△∅}{R+r}$
而△∅=B0×L×s
联立解得:s=2m
(3)mgh-μmgscos37°-WF=$\frac{1}{2}$mv2-0
产生热量:WF=Q=0.1J
${Q}_{R}=\frac{4}{5}$Q=0.08J
(4)当回路中的总磁通量不变时,
金属棒中不产生感应电流.
此时金属棒将沿导轨做匀加速运动.              
牛顿第二定律:mgsinθ-μmgcosθ=ma
a=g(sinθ-μcosθ)=10×(0.6-0.5×0.8)m/s2=2m/s2
磁通量为:∅=BL(s+vt+$\frac{1}{2}$at2)=B0Ls
则磁感应强度与时间变化关系:B=$\frac{{B}_{0}s}{s+vt+\frac{{at}^{2}}{2}}$=$\frac{2}{2+2t{+t}^{2}}$
答:(1)金属棒与导轨间的动摩擦因数为0.5; 
(2)cd离NQ的距离2m;
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量0.08J;
(4)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,为使金属棒中不产生感应电流,则磁感应强度随时间t变化为B=$\frac{2}{2+2t{+t}^{2}}$

点评 本题考查了牛顿运动定律、闭合电路殴姆定律,安培力公式、感应电动势公式,还有动能定理.同时当金属棒速度达到稳定时,则一定是处于平衡状态,原因是安培力受到速度约束的.还巧妙用磁通量的变化去求出面积从而算出棒的距离.最后线框的总磁通量不变时,金属棒中不产生感应电流是解题的突破点

练习册系列答案
相关题目
19.某实验小组利用图(a)所示实验装置及数字化信息系统探究“外力做功与小车动能变化的关系”.实验时将小车拉到水平轨道的O位置由静止释放,在小车从O位置运动到A位置过程中,经计算机处理得到了弹簧弹力与小车位移的关系图线如图(b)所示,还得到了小车在A位置的速度大小vA;另外用电子秤测得小车( 含位移传感器发射器)的总质量m.
回答下列问题:
(1)由图(b)可知中图(a)中A位置到力传感器的距离大于(填“小于”、“等于”或“大于”)弹簧原长;
(2)在小车从O位置运动到A位置过程中弹簧对小车所做的功W=$\frac{1}{2}$(F0+FA)sA,小车的动能改变量△Ek=$\frac{1}{2}$mvA2;(表达式用题中已知物理量的符号表示)
(3)甲同学在分析实验数据后,还补充了如下实验:将弹簧从小车上卸下,给小车一初速度,让小车从轨道右端向左端运动,利用位移传感器和计算机得到小车的速度随时间变化的图线如图(c)所示,则他要探究关系式(F0+FA-2m$\frac{{v}_{0}}{{t}_{m}}$)sA=mvA2是否成立;(关系式用题中已知物理量的符号表示)
(4)乙同学反思整个实验过程提出了自己的方案:在实验开始时,小车不连接弹簧,将图(a)中轨道右(填“左”或“右”)端垫高至合适位置,让小车在轨道上获得一初速度 开始运动,若计算机监测到的小车位移时间图线是直线,即表明轨道倾角调整到位,再实施题中所述实验步骤,而无需做甲同学补充的实验.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网