ÌâÄ¿ÄÚÈÝ
3£®ÔÚ¡°Ì½¾¿ÇóºÏÁ¦µÄ·½·¨¡±ÊµÑéÖУ¬ÐèÒª½«ÏðƤÌõµÄÒ»¶Ë¹Ì¶¨ÔÚˮƽľ°åÉÏ£¬ÁíÒ»¶ËϵÉÏ´øÓÐÉþÌ×µÄÁ½¸ùϸÉþ£®ÊµÑéʱÐèÁ½´ÎÀÉìÏðƤÌõ£ºÒ»´ÎÊÇÓÃÁ½¸öµ¯»É²âÁ¦¼Æ·Ö±ð¹´×¡ÉþÌ×£¬²¢»¥³É½Ç¶ÈµØÀÏðƤÌõ£¬Ê¹ÏðƤÌõÉ쳤£¬½áµãµ½´ïijһλÖÃO£¬ÊµÑéÇé¿öÈçͼ1£»ÁíÒ»´ÎÊÇÓÃÒ»¸öµ¯»É²âÁ¦¼Æͨ¹ýϸÉþÀÏðƤÌõ£®£¨1£©ÓйشËʵÑ飬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇC£®
A£®Á½¸ùϸÉþ±ØÐëµÈ³¤
B£®Á½´ÎÀÉìÏðƤÌõ£¬²»ÐèÒª½«ÏðƤÌõ½áµãÀµ½Í¬Ò»Î»ÖÃOµã
C£®Óõ¯»É²âÁ¦¼ÆÀϸÉþÌ×ʱ£¬Ó¦±£³Öµ¯»É²âÁ¦¼ÆÓëľ°åƽÐÐ
D£®°ÑÏðƤÌõµÄ½áµãÀµ½Oµãʱ£¬Á½µ¯»É²âÁ¦¼ÆÖ®¼äµÄ¼Ð½ÇӦȡ90¡ã²»±ä£¬ÒÔ±ãËã³öºÏÁ¦µÄ´óС
£¨2£©Ä³´ÎʵÑéÖÐÁ½¸öµ¯»É²âÁ¦¼ÆµÄÀÁ¦¡¢¼ºÔÚͼ2Öл³ö£¬Í¼Öеķ½¸ñÿ±ß³¤¶È±íʾ1N£¬OµãÊÇÏðƤÌõµÄ½áµã£¬ÇëÓÃÁ½¸öÖ±½ÇÈý½Ç°åÑϸñ×÷³öºÏÁ¦FµÄͼʾ£¬²¢Çó³öºÏÁ¦µÄ´óСΪ6.0N£®
£¨3£©Èçͼ3Ëùʾ£¬ÈôÏÈÓû¥³ÉÈñ½ÇµÄÁ½¸öÁ¦ºÍ½«ÏðƤÌõµÄ½áµãÀµ½Î»ÖÃO£¬È»ºó±£³Ö¦Â½Ç²»±ä£¬ÄæʱÕ뻺Âýת¶¯Ê¹¦Á½ÇÖð½¥Ôö´óÖÁ90¡ã£¬Ôڴ˹ý³ÌÖУ¬±£³ÖOµãλÖò»¶¯£¬ÔòF1ºÍF2µÄ´óС±ä»¯Çé¿öÊÇB£®
A£®F1Ò»Ö±±ä´ó
B£®F1ÏȱäСºó±ä´ó
C£®F1Ò»Ö±±äС
D£®F2Ïȱä´óºó±äС£®
·ÖÎö £¨1£©±¾ÊµÑéµÄÄ¿µÄÊÇÑéÖ¤Á¦µÄƽÐÐËıßÐζ¨Ôò£¬Ñо¿ºÏÁ¦Óë·ÖÁ¦µÄ¹Øϵ£¬¶øºÏÁ¦Óë·ÖÁ¦ÊǵÈЧµÄ£®±¾ÊµÑé²ÉÓÃ×÷ºÏÁ¦Óë·ÖÁ¦Í¼Ê¾µÄ·½·¨À´ÑéÖ¤£¬¸ù¾ÝʵÑéÔÀíºÍ·½·¨À´Ñ¡Ôñ£®
£¨2£©¸ù¾ÝƽÐÐËıßÐλ³öºÏÁ¦À´£¬È»ºó¸ù¾ÝÌâÄ¿¸øµÄ¡°Ã¿¸ñµÄ±ß³¤´ú±í1N¡±À´Ëã³öºÏÁ¦µÄ´óС£®
£¨3£©µã0Êܵ½Èý¸öÀÁ¦£¬´¦ÓÚƽºâ״̬£¬ËùÒÔÁ½¸öµ¯»É²âÁ¦¼Æ¶ÔOµãÀÁ¦µÄºÏÁ¦Ò»¶¨²»±ä£¬F2µ¯»ÉÀÁ¦·½Ïò²»±ä£¬F1µ¯»ÉÀÁ¦·½ÏòºÍ´óС¶¼¸Ä±ä£¬¸ù¾ÝƽÐÐËıßÐζ¨Ôò×÷ͼ·ÖÎö¼´¿É£®
½â´ð ½â£º£¨1£©A¡¢Á½¸öÉþ×ӵij¤¶ÈûÓÐÑϸñÒªÇó£¬ÂÔ³¤Ò»µã¼´¿É£¬Ã»ÓбØÒªµÈ³¤£¬¹ÊA´íÎó£»
B¡¢Òª±£Ö¤Á½¸öµ¯»É³ÆµÄÀÁ¦ÓëÒ»¸öµ¯»É³ÆµÄÀÁ¦Ð§¹ûÏàͬ£¬ÏðƤÌõÒªÑØÏàͬ·½ÏòÉ쳤Á¿Ïàͬ£¬ÔòOµãµÄλÖÃÓ¦¹Ì¶¨£¬¹ÊB´íÎó£»
C¡¢±¾ÊµÑéÊÇÔÚˮƽÃæ×÷Á¦µÄͼʾ£¬ÎªÁ˼õСÎó²îµ¯»É²âÁ¦¼Æ±ØÐë±£³ÖÓëľ°åƽÐУ¬¶ÁÊýʱÊÓÏßÒªÕý¶Ôµ¯»É²âÁ¦¼ÆµÄ¿Ì¶È£¬¹ÊCÕýÈ·£»
D¡¢±¾ÊµÑéֻҪʹÁ½´ÎЧ¹ûÏàͬ¾ÍÐУ¬Á½¸öµ¯»É³ÆÀÁ¦µÄ·½ÏòûÓÐÏÞÖÆ£®¹ÊD´íÎó£®
¹ÊÑ¡£ºC£®
£¨2£©¸ù¾ÝƽÐÐËıßÐζ¨Ôò£¬µÃ³öºÏÁ¦ÈçÏÂËùʾ£º
¸ù¾Ýͼʾ¿ÉÖª£¬ºÏÁ¦´ú±íµÄ³¤¶ÈΪ6¸ö±ß³¤£¬Òò´ËÆäºÏÁ¦´óСΪF=6.0N£®
£¨3£©µã0Êܵ½Èý¸öÀÁ¦£¬´¦ÓÚƽºâ״̬£¬¶Ôµã0ÊÜÁ¦·ÖÎö£¬Êܵ½Á½¸öµ¯»ÉµÄÀÁ¦ºÍÏðƤÌõµÄÀÁ¦£¬Èçͼ£¬ÆäÖÐÏðƤÌõ³¤¶È²»±ä£¬ÆäÀÁ¦´óС²»±ä£¬F2ÀÁ¦·½Ïò²»±ä£¬F1µ¯»ÉÀÁ¦·½ÏòºÍ´óС¶¼¸Ä±ä£®
ÄæʱÕ뻺Âýת¶¯F1ʹ¦Á½ÇÖð½¥Ôö´óÖÁ90¡ãµÄ¹ý³ÌÖУ¬¸ù¾ÝƽÐÐËıßÐζ¨Ôò¿ÉÒÔ¿´³öµÄF1ÏȱäСºó±ä´ó£¬F2µÄ¶ÁÊý²»¶Ï±ä´ó£»¹ÊBÕýÈ·¡¢ACD´íÎó£®
¹ÊÑ¡£ºB£®
¹Ê´ð°¸Îª£º£¨1£©C£»£¨2£©6.0£»£¨3£©B£®
µãÆÀ ±¾ÊµÑé²ÉÓÃÊǵÈЧÌæ´úµÄ˼ά·½·¨£®ÊµÑéÖÐÒª±£Ö¤Ò»¸öºÏÁ¦ÓëÁ½¸ö·ÖÁ¦Ð§¹ûÏàͬ£¬½áµãOµÄλÖñØÐëÏàͬ£®Í¬Ê±ÒªÍ¨¹ýÔÀí¼´¿É·ÖÎöʵÑéÖеķ½·¨¼°Îó²î·ÖÎö£®±¾ÌâÊÇÈýÁ¦Æ½ºâÎÊÌâÖеĶ¯Ì¬·ÖÎöÎÊÌ⣬¹Ø¼üÊÜÁ¦·ÖÎöºó£¬×÷³öʾÒâͼ£¬È»ºóÔËÓÃÁ¦µÄƽÐÐËıßÐζ¨Ôò½øÐзÖÎöÌÖÂÛ£®
A£® | Ô˶¯Ô±°ÙÃ׳åÏßʱµÄËÙ¶ÈΪ12m/s | B£® | Æû³µËٶȼÆָʾ×ÅËÙ¶ÈΪ100km/h | ||
C£® | ÖʵãÔÚµÚ3sÄÚµÄËÙ¶ÈΪ8m/s | D£® | ÖʵãÔÚµÚ3sÄ©µÄËÙ¶ÈΪ8m/s |
A£® | 5.0N 2.0N | B£® | 2.0N 5.0N | C£® | 1.0N 6.0N | D£® | 7.0N 0 |
A£® | Ô˶¯Ô±µÄ¶¯ÄܼõСÁË0.5mgh | B£® | Ô˶¯Ô±µÄ»úеÄܼõСÁË1.5mgh | ||
C£® | Ô˶¯Ô±¿Ë·þ×èÁ¦Ëù×öµÄ¹¦Îª0.5mgh | D£® | Ô˶¯Ô±µÄÖØÁ¦ÊÆÄܼõСÁË1.5mgh |
A£® | A¡¢BÁ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®ÊÇ$\frac{1}{\sqrt{3}}$ | |
B£® | A¡¢BÁ½Á£×ÓÔڴų¡ÖÐ×öÔ²ÖÜÔ˶¯µÄ°ë¾¶Ö®±ÈÊÇ$\frac{2+\sqrt{3}}{\sqrt{3}}$ | |
C£® | A¡¢BÁ½Á£×ÓµÄ$\frac{q}{m}$Ö®±ÈÊÇ$\sqrt{3}$ | |
D£® | A¡¢BÁ½Á£×ÓµÄ$\frac{q}{m}$Ö®±ÈÊÇ$\frac{2+\sqrt{3}}{\sqrt{3}}$ |