ÌâÄ¿ÄÚÈÝ
17£®ÈçͼËùʾ£¬ÔÚˮƽÏòÓÒ¡¢´óСΪEµÄÔÈÇ¿µç³¡ÖУ¬ÔÚOµã¹Ì¶¨Ò»µçºÉÁ¿ÎªQµÄÕýµçºÉ£¬A¡¢B¡¢C¡¢DΪÒÔOΪԲÐÄ¡¢°ë¾¶ÎªrµÄͬһԲÖÜÉϵÄËĵ㣬B¡¢DÁ¬ÏßÓëµç³¡ÏßƽÐУ¬A¡¢CÁ¬ÏßÓëµç³¡Ïß´¹Ö±£®Ôò£¨¡¡¡¡£©A£® | AµãµÄ³¡Ç¿´óСΪ$\sqrt{{E}^{2}+{k}^{2}\frac{{Q}^{2}}{{r}^{4}}}$ | B£® | BµãµÄ³¡Ç¿´óСΪE-k$\frac{Q}{{r}^{2}}$ | ||
C£® | DµãµÄ³¡Ç¿´óС²»¿ÉÄÜΪ0 | D£® | A¡¢CÁ½µãµÄ³¡Ç¿Ïàͬ |
·ÖÎö ¸ù¾ÝµãµçºÉµç³¡Ç¿¶È¹«Ê½E=$\frac{kQ}{{r}^{2}}$£¬½áºÏʸÁ¿ºÏ³É·¨Ôò£¬¼´¿ÉÇó½â£®
½â´ð ½â£ºA¡¢ÕýµãµçºÉQÔÚAµãµÄµç³¡Ç¿¶È´óСE¡ä=$\frac{kQ}{{r}^{2}}$£¬¶øÔÈÇ¿µç³¡ÔÚAµãµÄµç³¡Ç¿¶È´óСΪE£¬Òò·½ÏòÏ໥´¹Ö±£¬¸ù¾ÝʸÁ¿µÄºÏ³É·¨Ôò£¬ÔòÓÐAµãµÄ³¡Ç¿´óСΪ$\sqrt{{E}^{2}+{k}^{2}\frac{{Q}^{2}}{{r}^{4}}}$£¬¹ÊAÕýÈ·£»
B¡¢Í¬Àí£¬µãµçºÉQÔÚBµãµÄµç³¡Ç¿¶ÈµÄ·½ÏòÓëÔÈÇ¿µç³¡·½ÏòÏàͬ£¬Òò´ËBµãµÄ³¡Ç¿´óСΪE+k$\frac{Q}{{r}^{2}}$£¬¹ÊB´íÎó£»
C¡¢µ±µãµçºÉQÔÚDµãµÄµç³¡Ç¿¶ÈµÄ·½ÏòÓëÔÈÇ¿µç³¡·½ÏòÏà·´£¬ÇÒ´óСÏàµÈʱ£¬ÔòDµãµÄµç³¡Ç¿¶È´óС¿ÉÒÔΪÁ㣬¹ÊC´íÎó£»
D¡¢¸ù¾ÝʸÁ¿µÄºÏ³É·¨Ôò£¬½áºÏµãµçºÉµç³¡ÓëÔÈÇ¿µç³¡µÄ·½Ïò£¬¿ÉÖª£¬A¡¢CÁ½µãµÄµç³¡Ç¿¶È´óСÏàµÈ£¬¶ø·½Ïò²»Í¬£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºA£®
µãÆÀ ¿¼²éµãµçºÉµÄµç³¡Ç¿¶È¹«Ê½µÄÄÚÈÝ£¬ÕÆÎÕʸÁ¿ºÏ³É·¨ÔòµÄÓ¦Óã¬×¢ÒâÕýµãµçºÉÔÚ¸÷µãµÄµç³¡Ç¿¶ÈµÄ·½ÏòÊǽâÌâµÄ¹Ø¼ü£®
A£® | ÇòA¶ÔÊúÖ±ÈÝÆ÷±ÚѹÁ¦F1=4$\sqrt{3}$N | B£® | ÇòA¶ÔBÇòµÄѹÁ¦F2=4$\sqrt{3}$N | ||
C£® | ÇòB¶ÔÊúÖ±ÈÝÆ÷±ÚѹÁ¦F3=2$\sqrt{3}$N | D£® | ÇòB¶ÔÈÝÆ÷µ×ÃæµÄѹÁ¦F4=2$\sqrt{3}$N |
A£® | Îï¿éBÊܵ½µÄĦ²ÁÁ¦ÏȼõСºóÔö´ó | |
B£® | µØÃæ¶ÔбÃæÌåµÄĦ²ÁÁ¦ÏÈÏòÓÒºóÏò×ó | |
C£® | СÇòAµÄ»úеÄÜÊغã | |
D£® | ÉþµÄÀÁ¦¿ÉÄܶÔB×öÕý¹¦ |
£¨1£©Îª·½±ãʵÑéµ÷½ÚÇÒÄܽÏ׼ȷµØ½øÐвâÁ¿£¬»¬¶¯±ä×èÆ÷ӦѡÓÃR1£¨Ìî¡°R1¡±»ò¡°R2¡±£©£®
£¨2£©°´ÕÕÈçͼ¢ÙËùʾʵÎïÁ¬Ïß½øÐвâÁ¿£¬²âµÃÊý¾ÝÈçϱíËùʾ£®ÓÉÊý¾Ý¿É¿´³ö£¬µçѹ±íʾÊý±ä»¯²»ÏÔÖø£¬ÎªÊ¹µçѹ±íµÄʾÊý±ä»¯¸üÃ÷ÏÔ£¬Ç뽫ʵÎïÁ¬ÏßͼÂԼӸĶ¯£¬ÔÚ·½¿òÖл³ö¸Ä¶¯ºóµÄʵÑéµç·ͼ£®
´ÎÊý ´ý²âÁ¿ | 1 | 2 | 3 | 4 | 5 |
I/A | 0.15 | 0.20 | 0.30 | 0.40 | 0.50 |
U/V | 1.46 | 1.45 | 1.43 | 1.42 | 1.39 |
£¨3£©ÊµÑéÖиı们¶¯±ä×èÆ÷µÄ×èÖµ£¬¸ù¾Ý²â³öÊý¾Ý»³öµÄU-IͼÏßÈçͼ¢ÚËùʾ£¬Ôò´Ë¸Éµç³ØµÄÄÚ×èr=0.20¦¸£®£¨±£ÁôÁ½Î»ÓÐЧÊý×Ö£©
A£® | Ea=Eb=Ec | B£® | Ea£¾Eb£¾Ec | C£® | Ea£¼Eb£¼Ec | D£® | ÎÞ·¨ÅÐ¶Ï |