ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÔÚÇã½ÇΪ30¡ãµÄ¹â»¬Ð±ÃæÉÏ£¬Ò»¾¢¶ÈϵÊýΪk1µÄÇáÖʵ¯»ÉÒ»¶Ë¹Ì¶¨Ôڹ̶¨µ²°åCÉÏ£¬ÁíÒ»¶ËÁ¬½ÓÒ»ÖÊÁ¿ÎªMµÄÎïÌåA£¬ÁíÒ»¾¢¶ÈϵÊýΪk2µÄÇᵯ»ÉÒ»¶ËÁ¬A£¬ÁíÒ»¶ËÁ¬Ï¸ÉþÌ×£¬¹ý¶¥¶Ë»¬ÂÖºóÉþÌ×Êúֱϴ¹ÀֱϸÉþ£¬´ËʱÉþÌ×ÔÚaλÖã¬ÇÒK2ΪԳ¤×´Ì¬£¬ÔÚÉþÌ×ÉϹÒÖÊÁ¿ÎªmµÄÖØÎïBʱÉþÌ×Ͻµµ½bÇÒK1ΪԳ¤×´Ì¬£¬AÔÙ´ÎƽºâÊÔÇó¢ÙÎïÌåBµÄÖÊÁ¿ÓëAµÄÖÊÁ¿Ö®±È£®¢ÚÉþÌ×ÏÂÒƵľàÀëhab£®
·ÖÎö£ºÏÈÉÏÃ浯»ÉΪÑо¿¶ÔÏó¸ù¾ÝÊÜÁ¦Æ½ºâÁз½³ÌÇó½âmµÄÖÊÁ¿£¬È»ºóδ¹ÒÖØÎïʱ£¬µ¯»Ék1Êܵ½µÄѹÁ¦´óСµÈÓÚAµÄÖØÁ¦ÑØбÃæÏòϵķÖÁ¦£¬¸ù¾Ýºú¿Ë¶¨ÂÉÇó³ö´Ëʱ¸Ãµ¯»ÉµÄѹËõÁ¿£®µ±AÓëµ²°åC¼ä¼·Ñ¹Á¦Ç¡ºÃΪÁãʱ£¬AÊܵ½k2µÄÀÁ¦µÈÓÚAÖØÁ¦ÑØбÃæÏòϵķÖÁ¦£¬¸ù¾Ýºú¿Ë¶¨ÂÉÇó³ö´Ëʱµ¯»Ék2µÄÉ쳤Á¿£¬×îºóÇó³öÉþÌ×ϽµµÄ¾àÀ룮
½â´ð£º½â£º¢Ù¡¢ÒÔµ¯»Ék2ΪÑо¿¶ÔÏó£¬ÊÜÁ¦Æ½ºâ£ºmg=Mgsin30¡ã
¼´£ºmg=
Mg
¡àm=
M
=
¢Ú¡¢¸ù¾Ýºú¿Ë¶¨ÂÉ£¬k1ѹËõÁ¿ x1=
k2É쳤Á¿ x2=
hab=x1+x2=
+
=
+
=
?
´ð£º¢ÙÎïÌåBµÄÖÊÁ¿ÓëAµÄÖÊÁ¿Ö®±È
£®
¢ÚÉþÌ×ÏÂÒƵľàÀëhabΪ
£®
¼´£ºmg=
1 |
2 |
¡àm=
1 |
2 |
m |
M |
1 |
2 |
¢Ú¡¢¸ù¾Ýºú¿Ë¶¨ÂÉ£¬k1ѹËõÁ¿ x1=
Mg |
2k1 |
k2É쳤Á¿ x2=
mg |
k2 |
hab=x1+x2=
Mg |
2k1 |
Mg |
k2 |
Mg |
2k1 |
Mg |
2k2 |
Mg |
2 |
k1+k2 |
k1k2 |
´ð£º¢ÙÎïÌåBµÄÖÊÁ¿ÓëAµÄÖÊÁ¿Ö®±È
1 |
2 |
¢ÚÉþÌ×ÏÂÒƵľàÀëhabΪ
Mg(k1+k2) |
2k1k2 |
µãÆÀ£º¶ÔÓÚµ¯»ÉÎÊÌ⣬Ҫ·ÖÎö³õ¡¢Ä©Á½¸ö״̬µ¯»ÉµÄ±äÐÎÁ¿£¬ÔÙÇó½âÉþÌ×ϽµµÄ¾àÀ룬ÊǾ³£²ÉÓõÄ˼·£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÈçͼËùʾ£¬ÔÚÇã½ÇΪ¦ÈµÄ¹â»¬Ð±ÃæÉÏ£¬´æÔÚ×ÅÁ½¸ö´óСÏàµÈ¡¢·½ÏòÏà·´µÄÔÈÇ¿´Å³¡£¬´Å³¡·½ÏòÓëбÃæ´¹Ö±£¬Á½´Å³¡µÄ¿í¶ÈMJºÍJG¾ùΪL£¬Ò»¸öÖÊÁ¿Îªm¡¢µç×èΪR¡¢±ß³¤Ò²ÎªLµÄÕý·½Ðε¼Ïß¿ò£¬Óɾ²Ö¹¿ªÊ¼ÑØбÃæÏ»¬£¬µ±ab±ß¸ÕÔ½¹ýGH½øÈë´Å³¡Ê±£¬Ïß¿òÇ¡ºÃÒÔËÙ¶Èv0×öÔÈËÙÖ±ÏßÔ˶¯£»µ±ab±ßÏ»¬µ½JPÓëMNµÄÖмäλÖÃʱ£¬Ïß¿òÓÖÇ¡ºÃÒÔËÙ¶Èv×öÔÈËÙÖ±ÏßÔ˶¯£®ÔòÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢v=v0 | ||
B¡¢Ïß¿òÀ뿪MNµÄ¹ý³ÌÖеçÁ÷·½ÏòΪadcba | ||
C¡¢µ±ab±ß¸ÕÔ½¹ýJPʱ£¬Ïß¿ò¼ÓËٶȵĴóСΪ3 gsin¦È | ||
D¡¢´Óab±ß¸ÕÔ½¹ýGHµ½ab±ß¸ÕÔ½¹ýMN¹ý³ÌÖУ¬Ïß¿ò²úÉúµÄÈÈÁ¿Îª2mgLsin¦È+
|