题目内容
【题目】如图,两条间距为L的平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一金属棒垂直放置在两导轨上;在MN左侧面积为S的圆形区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B随时间t的变化关系为B=kt,式中k为常量,且k>0;在MN右侧区域存在一与导轨垂直、磁感应强度大小为B0、方向垂直纸面向里的匀强磁场。t=0时刻,金属棒从MN处开始,在水平拉力F作用下以速度v0向右匀速运动。金属棒与导轨的电阻及摩擦均可忽略。则
A. 在t时刻穿过回路的总磁通量为 B0Lv0t
B. 电阻R上的电流为恒定电流
C. 在时间△t内流过电阻的电荷量为△t
D. 金属棒所受的水平拉力F随时间均匀增大
【答案】BC
【解析】
A、根据题意可知,MN左边的磁场方向与右边的磁场方向相同,那么总磁通量即为两种情况磁通量之和,则在时刻t穿过回路的总磁通量为Φ=Φ1+Φ2=ktS+B0v0tl=ktS+B0lv0t,故A错误;
B、根据法拉第电磁感应定律得E,结合闭合电路欧姆定律得 I=kS+B0lv0,故通过电阻R上的电流为恒定电流
C、△t时间内通过电阻的电量为q=I△t,故C正确。
D、金属棒所受的安培力大小FA=B0Il;根据平衡条件得,水平恒力大小等于安培力大小,即为F。故外力F是一个恒量,故D错误。
练习册系列答案
相关题目