题目内容

19.带电粒子的电荷量与其质量之比称为比荷( $\frac{q}{m}$).是带电粒子的基本参量之一.
如图l所示是汤姆孙用来测定电子比荷的实验装置,真空玻璃管中K是金属板制成的阴极,由阴极K发出的射线被加速后穿过带有狭缝的极板A、B.经过两块平行铝板C、D中心轴线后打在玻璃管右侧的荧光屏上形成光点.若平行铝板C、D间无电压,电子将打在荧光屏上的中心O点;若在平行铝板C、D间施加偏转电压U,则电子将打在O1点,Ol点与O点的竖直间距为h,水平间距可忽略不计.若再在平行铝板C、D间施加一个方向垂直于纸面向里、磁感应强度为B的匀强磁场(图中未画出),则电子在荧光屏上产生的光点又回到O点.已知平行铝板C、D的长度均为L1,板间距离为d,它们的右端到荧光屏中心O点的水平距离为L2,不计电子的重力和电子间的相互作用.

(1)求电子刚进入平行铝板C、D间时速度的大小;
(2)推导出电子比荷的表达式;
(3)伽利略曾通过逻辑推理得知:在同一高度同时由静止释放两个质量不同的铁球,只在重力作用下,它们可以同时落地.那么静电场中的不同带电粒子是否也会出现“同时落地”的现象呢?比如,在图2所示的静电场中的A点先后由静止释放两个带电粒子,它们只在电场力作用下运动到B点.请你分析说明:若要两个带电粒子从A运动到B所用时间相同(即实现“同时落地”),则必须满足什么条件?

分析 (1)加偏转电压后,板间电场为匀强电场,根据匀强电场的场强公式求出电场强度;当电子受到电场力与洛伦兹力平衡时,做匀速直线运动,因此由电压、磁感应强度可求出运动速度.
(2)电子在电场中做类平抛运动,将运动分解成沿电场强度方向与垂直电场强度方向,然后由运动学公式求解.电子离开电场后,做匀速直线运动,从而可以求出偏转距离的表达式,变型得到电子的荷质比表达式.
(3)带电粒子由A运动到B的过程中都是做初速度等于0的变加速直线运动,如果它们经过任何位置时的加速度都相同,则它们从A运动到B的运动情况也完全相同,它们从A运动到B的时间就相等,由此思路分析即可.

解答 解:(1)加偏转电压U后,板间区域的电场为匀强电场,电场强度的大小$E=\frac{U}{b}$,方向竖直向下;
当电子受到的电场力与洛沦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为v,
则  evB=eE
得  v=$\frac{E}{B}$
即  v=$\frac{U}{Bb}$
(2)当极板间仅有偏转电场 时,电子以速度v进入后,竖直方向作匀加速运动,加速度为a=$\frac{eU}{mb}$
电子在水平方向作匀速运动,在电场内的运动时间为  ${t}_{1}^{\;}=\frac{{L}_{1}^{\;}}{v}$
这样,电子在电场中,竖直向上偏转的距离为  d1=$\frac{1}{2}a{t}_{1}^{2}$=$\frac{e{L}_{1}^{2}U}{2m{v}_{\;}^{2}b}$
离开电场时竖直向上的分速度为  v1=at1=$\frac{e{L}_{1}^{\;}U}{mvb}$
电子离开电场后做匀速直线运动,经t2时间到达荧光屏  t2=$\frac{{L}_{2}^{\;}}{v}$
t2时间内向上运动的距离为    d2=v1t2=$\frac{eU{L}_{1}^{\;}{L}_{2}^{\;}}{m{v}_{\;}^{2}b}$
这样,电子向上的总偏转距离为   d=d1+d2=$\frac{eU}{m{v}_{\;}^{2}b}$L1(L2+$\frac{{L}_{1}^{\;}}{2}$)
可解得   $\frac{e}{m}$=$\frac{Ud}{{B}_{\;}^{2}b{L}_{1}^{\;}({L}_{2}^{\;}+\frac{{L}_{1}^{\;}}{2})}$
(3)带电粒子由A运动到B的过程中都是做初速度等于0的变加速直线运动,如果它们经过任何位置时的加速度都相同,则它们从A运动到B的运动情况也完全相同,它们从A运动到B的时间就相等.
带电粒子的加速度:a=$\frac{qE}{m}$,可知若要加速度相等,即时间相等,则需要它们的比荷$\frac{q}{m}$相同.
答:(1)电子刚进入平行铝板C、D间时速度的大小为$\frac{U}{Bb}$;
(2)推导出电子比荷的表达式为$\frac{e}{m}$=$\frac{Ud}{{B}_{\;}^{2}b{L}_{1}^{\;}({L}_{2}^{\;}+\frac{{L}_{1}^{\;}}{2})}$;
(3)要两个带电粒子从A运动到B所用时间相同(即实现“同时落地”),则必须满足它们的比荷$\frac{q}{m}$相同.

点评 考查平抛运动处理规律:将运动分解成相互垂直的两方向运动,因此将一个复杂的曲线运动分解成两个简单的直线运动,并用运动学公式来求解.

练习册系列答案
相关题目
4.光电效应现象逸出的光电子的最大初动能不容易直接测量,也可以利用类似的转换的方法.
(1)如图1是研究某光电管发生光电效应的电路图,当用频率为ν的光照射金属K时,通过调节光电管两端电压U,测量对应的光电流强度I,绘制了如图2的I-U图象.求当用频率为2ν的光照射金属K时,光电子的最大初动能Ek的大小.已知电子所带电荷量为e,图象中Uc、Im及普朗克常量h均为已知量.
(2)有研究者设计了如下的测量光电子最大初动能的方式.研究装置如图3,真空中放置的平行正对金属板可以作为光电转换装置.用一定频率的激光照射A板中心O点,O点附近将有大量的电子吸收光子的能量而逸出.B板上涂有特殊材料,当电子打在B板上时会在落点处留有可观察的痕迹.可以认为所有逸出的电子都从O点以相同大小的速度逸出,其初速度沿各个方向均匀分布,金属板的正对面积足够大(保证所有的光电子都不会射出两极板所围的区域),光照条件保持不变.已知A、B两极板间的距离为d,电子所带电荷量为e,质量为m,其所受重力及它们之间的相互作用力均可忽略不计.
①通过外接可调稳压电源使A、B两极板有一定的电势差,A板接电源的负极,由O点逸出的电子打在B板上的最大区域范围为一个圆形,且圆形的面积随A、B两极板间的电压变化而改变.已知电子逸出时的速度大小为v0,试通过计算,推导电子打在B板上的最大范围圆形半径r与两极板间电压U的关系式.
②通过外接电源给A、B两极板间加上一定的电压U0,若第一次A板接电源的负极,电子打在B板上的最大区域为一个圆形;第二次A板接电源的正极,保持极板间所加电压U0不变,电子打在B板上的最大区域范围仍为一个圆形,只是这个圆形半径恰好是第一次的一半.为使B板上没有电子落点的痕迹,则两金属板间的电压满足什么条件?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网