【题目】武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:
现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
劳动节当日客流量 | |||
频数(年) | 2 | 4 | 4 |
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:
劳动节当日客流量 | |||
型游船最多使用量 | 1 | 2 | 3 |
若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?
【题目】为了研究每周累计户外暴露时间是否足够(单位:小时)与近视发病率的关系,对某中学一年级100名学生进行不记名问卷调查,得到如下数据:
近视 | 不近视 | |
足够的户外暴露时间 | 20 | 35 |
不足够的户外暴露时间 | 30 | 15 |
(1)用样本估计总体思想估计该中学一年级学生的近视率;
(2)能否认为在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?
附:.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |