8.设变量x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 2x-y-3≤0\end{array}\right.$则目标函数z=2x+3y的最大值为( )
A. | 7 | B. | 8 | C. | 22 | D. | 23 |
7.若a∈R,则“a2>a”是“a>1”的( )条件.
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
2.sin70°cos10°+cos110°sin10°=( )
A. | -$\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
20.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
(1)为了研究喜欢打蓝球是否与性别有关,根据独立性检验,你有多大的把握认为是否喜欢打蓝球与性别有关?
(2)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(3)在上述(2)中抽取的6人中选2人,求恰有一名女生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
(2)用分层抽样的方法在喜欢打蓝球的学生中抽6人,其中男生抽多少人?
(3)在上述(2)中抽取的6人中选2人,求恰有一名女生的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
19.下列命题错误的是( )
0 251629 251637 251643 251647 251653 251655 251659 251665 251667 251673 251679 251683 251685 251689 251695 251697 251703 251707 251709 251713 251715 251719 251721 251723 251724 251725 251727 251728 251729 251731 251733 251737 251739 251743 251745 251749 251755 251757 251763 251767 251769 251773 251779 251785 251787 251793 251797 251799 251805 251809 251815 251823 266669
A. | 命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1” | |
B. | 命题“p或q”为真命题,则命题“p”和命题“q”均为真命题 | |
C. | 命题p;存在x0∈R,使得x02+x0+1<0,则¬p;任意x∈R,使得x2+x+1≥0 | |
D. | “am2<bm2”是“a<b”的充分不必要条件 |