19.$(\frac{1}{2})^{-1+lo{g}_{0.5}4}$的值为( )
A. | 6 | B. | $\frac{7}{2}$ | C. | 8 | D. | $\frac{3}{7}$ |
17.若非零向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为钝角,|$\overrightarrow{b}$|=2,且当t=-$\frac{1}{2}$时,|$\overrightarrow{b}$-t$\overrightarrow{a}$|取最小值$\sqrt{3}$.向量$\overrightarrow{c}$满足($\overrightarrow{c}-\overrightarrow{b}$)⊥($\overrightarrow{c}-\overrightarrow{a}$),则当$\overrightarrow{c}•(\overrightarrow{a}+\overrightarrow{b})$取最大值时,|$\overrightarrow{c}-\overrightarrow{b}$|等于( )
A. | $\sqrt{6}$ | B. | 2$\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | $\frac{5}{2}$ |
16.已知命题p:?x∈[-1,2],函数f(x)=x2-x的值大于0,若p∨q是真命题,则命题q可以是( )
A. | ?x∈(-1,1)使得cosx<$\frac{1}{2}$ | |
B. | “-3<m<0”是“函数f(x)=x+log2x+m在区间($\frac{1}{2}$,2)上有零点”的必要不充分条件 | |
C. | x=$\frac{π}{6}$是曲线f(x)=$\sqrt{3}$sin2x+cos2x的一条对称轴 | |
D. | 若x∈(0,2),则在曲线f(x)=ex(x-2)上任意一点处的切线的斜率不小于-$\frac{1}{e}$ |
15.已知函数f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,则实数 b的取值范围是( )
0 250852 250860 250866 250870 250876 250878 250882 250888 250890 250896 250902 250906 250908 250912 250918 250920 250926 250930 250932 250936 250938 250942 250944 250946 250947 250948 250950 250951 250952 250954 250956 250960 250962 250966 250968 250972 250978 250980 250986 250990 250992 250996 251002 251008 251010 251016 251020 251022 251028 251032 251038 251046 266669
A. | (-∞,$\frac{3}{2}$) | B. | (-∞,$\frac{9}{4}$) | C. | (-∞,3) | D. | (-∞,$\sqrt{2}$) |