20.若随机变量X服从正态分布,其正态曲线上的最高点的坐标是(10,$\frac{1}{2}$),则该随机变量的方差等于( )
A. | 10 | B. | 100 | C. | $\frac{2}{π}$ | D. | $\sqrt{\frac{2}{π}}$ |
14.某种产品的广告费用支出x(万元)与销售额y(万元)之间的有如下的相应数据:
(1)求产品销额y对广告费用x的回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)据此估计广告费用为6万元时的销售收入y(万元)的值.
(参考公式中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x},\overline{y}$表示的样本平均值)
广告费用x | 1 | 2 | 3 | 4 | 5 |
销售额y | 20 | 30 | 40 | 50 | 50 |
(2)据此估计广告费用为6万元时的销售收入y(万元)的值.
(参考公式中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\overline{xy}-\overline{x}\overline{y}}{\overline{{x}^{2}}-{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,其中$\overline{x},\overline{y}$表示的样本平均值)
12.设不等式组$\left\{\begin{array}{l}2x-3y≥0\\ 3x-4y≥0\\ 5x-7y-20≤0\end{array}\right.$表示的平面区域是W,则W中的整点(横、纵坐标均为整数的点)个数是( )
0 248572 248580 248586 248590 248596 248598 248602 248608 248610 248616 248622 248626 248628 248632 248638 248640 248646 248650 248652 248656 248658 248662 248664 248666 248667 248668 248670 248671 248672 248674 248676 248680 248682 248686 248688 248692 248698 248700 248706 248710 248712 248716 248722 248728 248730 248736 248740 248742 248748 248752 248758 248766 266669
A. | 231 | B. | 230 | C. | 219 | D. | 218 |