10.YZ软件公司研发了一种新学习辅助软件,该软件上市后,前5个月在S中学的销售情况如下:
(1)设y关于x的回归直线方程为$\widehat{y}$=b$\widehat{x}$+a,现根据表中数据已经正确计算出了b的值为1.6,试求a的值,并估计该公司第6个月在S中学的销售量(计算结果精确到1);
(2)软件上市后,公司的研发团队对软件进行了修改和升级:所有第一个月购买的软件,YZ公司都免费升级,第二个月及以后购买的软件无需升级.S中学的A班的两个同学在前两个月分别向YZ公司购买了该软件1套,求这两个同学中有同学所购软件需升级的概率.
第x个月 | 1 | 2 | 3 | 4 | 5 |
售出软件套数y(套) | 2 | 3 | 5 | 7 | 8 |
(2)软件上市后,公司的研发团队对软件进行了修改和升级:所有第一个月购买的软件,YZ公司都免费升级,第二个月及以后购买的软件无需升级.S中学的A班的两个同学在前两个月分别向YZ公司购买了该软件1套,求这两个同学中有同学所购软件需升级的概率.
8.下表是关于某设备的使用年限(年)和所需要的维修费用y(万元)的几组统计数据:
y与x之间有较强线性相关性.
(1)求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
(2)试估计使用年限为10年时,维修费用多少万元?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求线性回归直线方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
(2)试估计使用年限为10年时,维修费用多少万元?
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
7.已知一组样本点(xi,yi),(其中i=1,2,3,…,30),变量x与y线性相关,且根据最小二乘法求得的回归方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,则下列说法正确的是( )
A. | 至少有一个样本点落在回归直线$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上 | |
B. | 若$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$斜率$\stackrel{∧}{b}$>0,则变量x与y正相关 | |
C. | 对所有的解释变量xi(i=1,2,3,…,30),$\stackrel{∧}{b}$xi+$\stackrel{∧}{a}$的值与yi有误差 | |
D. | 若所有样本点都在$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$上,则变量间的相关系数为1 |
4.偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,在某次考试成绩统计中,某老师为了对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行分析,随机挑选了8位同学,得到他们的两科成绩偏差数据如下:
(1)若x与y之间具有线性相关关系,求y关于x的线性回归方程;
(2)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
0 247127 247135 247141 247145 247151 247153 247157 247163 247165 247171 247177 247181 247183 247187 247193 247195 247201 247205 247207 247211 247213 247217 247219 247221 247222 247223 247225 247226 247227 247229 247231 247235 247237 247241 247243 247247 247253 247255 247261 247265 247267 247271 247277 247283 247285 247291 247295 247297 247303 247307 247313 247321 266669
学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
数学偏差x | 20 | 15 | 13 | 3 | 2 | -5 | -10 | -18 |
物理偏差y | 6.5 | 3.5 | 3.5 | 1.5 | 0.5 | -0.5 | -2.5 | -3.5 |
(2)若该次考试该班数学平均分为120分,物理平均分为91.5分,试由(1)的结论预测数学成绩为128分的同学的物理成绩.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.