6.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≥2}\\{y≤2}\\{x≤2y}\end{array}\right.$则目标函数z=x2+y2的最小值为( )
A. | $\frac{20}{9}$ | B. | 2 | C. | 3 | D. | 4 |
2.已知函数f(x)=cos$\frac{πx}{6}$,集合M={1,2,3,4,5,6,7,8,9},现从M中任取两个不同的元素m,n,则f(m)•f(n)=0的概率为( )
A. | $\frac{5}{12}$ | B. | $\frac{7}{12}$ | C. | $\frac{7}{18}$ | D. | $\frac{7}{9}$ |
20.为了了解两种手机电池的待机时间,研究人员分别对甲、乙两种电池做了7次测试,测试结果统计如下表所示:
(Ⅰ)试计算7次测试中,甲、乙两种电池的待机时间的平均值和方差,并判断哪种电池的性能比较好,简单说明理由.
(Ⅱ)为了深入研究乙电池的性能,研究人员从乙电池待机时间测试的7组数据中随机抽取2组分析,求2组数据均大于121的概率.
0 245982 245990 245996 246000 246006 246008 246012 246018 246020 246026 246032 246036 246038 246042 246048 246050 246056 246060 246062 246066 246068 246072 246074 246076 246077 246078 246080 246081 246082 246084 246086 246090 246092 246096 246098 246102 246108 246110 246116 246120 246122 246126 246132 246138 246140 246146 246150 246152 246158 246162 246168 246176 266669
测试次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲电池待机时间(h) | 120 | 125 | 122 | 124 | 124 | 123 | 123 |
乙电池待机时间(h) | 118 | 123 | 127 | 120 | 124 | 120 | 122 |
(Ⅱ)为了深入研究乙电池的性能,研究人员从乙电池待机时间测试的7组数据中随机抽取2组分析,求2组数据均大于121的概率.