题目内容
5.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S23=209.分析 由题意可判数列隔2项取出的数构成2为公差的等差数列,由等差数列的求和公式可得.
解答 解:∵数列{an+an+1+an+2}是公差为2的等差数列,
∴an+3-an=an+1+an+2+an+3-(an+an+1+an+2)=2,
∴数列隔2项取出的数构成2为公差的等差数列,
∵a1=1,a2=2,a3=3,
∴S23=a1+a2+a3+…+a23=(a1+a4+a7+…+a22)+(a2+a5+a8+…+a23)+(a3+a6+a9+…+a21)
=(8×1+$\frac{8×7}{2}×2$)+(8×2+$\frac{8×7}{2}$×2)+(7×3+$\frac{7×6}{2}$×2)
=209.
故答案为:209.
点评 本题考查等差数列的求和公式,得出数列隔2项取出的数构成2为公差的等差数列是解决问题的关键,属中档题.
练习册系列答案
相关题目
20.为了了解两种手机电池的待机时间,研究人员分别对甲、乙两种电池做了7次测试,测试结果统计如下表所示:
(Ⅰ)试计算7次测试中,甲、乙两种电池的待机时间的平均值和方差,并判断哪种电池的性能比较好,简单说明理由.
(Ⅱ)为了深入研究乙电池的性能,研究人员从乙电池待机时间测试的7组数据中随机抽取2组分析,求2组数据均大于121的概率.
测试次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
甲电池待机时间(h) | 120 | 125 | 122 | 124 | 124 | 123 | 123 |
乙电池待机时间(h) | 118 | 123 | 127 | 120 | 124 | 120 | 122 |
(Ⅱ)为了深入研究乙电池的性能,研究人员从乙电池待机时间测试的7组数据中随机抽取2组分析,求2组数据均大于121的概率.
10.在某市今年的公务员考试成绩中随机抽取500名考生的笔试成绩,按成绩分组,得到的频率分布表如下图所示.
(1)为了能选拔出最优秀的公务员,政府在笔试成绩的第3、4、5组中用分层抽样抽取12名考生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮选拔?
(2)在(1)的前提下,政府的3个下属机关决定先后用相同的方式在12名考生中随机抽取2名考生接受考官的面试,记抽取到第5组的A考生面试的下属机关的个数为x,求的分布列和期望.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 25 | 0.050 |
第2组 | [165,170) | 175 | 0.350 |
第3组 | [170,175) | 150 | |
第4组 | [175,180) | 0.200 | |
第5组 | [180,185) | 50 | 0.100 |
合计 | 500 | 1000 |
(2)在(1)的前提下,政府的3个下属机关决定先后用相同的方式在12名考生中随机抽取2名考生接受考官的面试,记抽取到第5组的A考生面试的下属机关的个数为x,求的分布列和期望.