题目内容

【题目】已知函数y=f(x)是定义在R上的增函数,函数y=f(x﹣1)的图象关于(1,0)对称.若对任意的x,y∈R,不等式f(x2﹣6x+21)+f(y2﹣8y)<0恒成立,则当x>3时,x2+y2的取值范围是(
A.(9,25)
B.(13,49)
C.(3,7)
D.(9,49)

【答案】B
【解析】解:∵函数y=f(x﹣1)的图象关于点(1,0)对称,
∴函数y=f(x)的图象关于点(0,0)对称,
即函数y=f(x)为奇函数,则f(﹣x)=﹣f(x),
又∵f(x)是定义在R上的增函数且f(x2﹣6x+21)+f(y2﹣8y)<0恒成立
∴f(x2﹣6x+21)<﹣f(y2﹣8y)=f(8y﹣y2)恒成立,
∴x2﹣6x+21<8y﹣y2
∴(x﹣3)2+(y﹣4)2<4恒成立,
设M (x,y),则当x>3时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,
则d= 表示区域内的点和原点的距离.
由图可知:d的最小值是OA= ,OB=OC+CB,5+2=7,
当x>3时,x2+y2的范围为(13,49).
故选B.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网