题目内容
17.若sin3θ-cos3θ≥sinθ-cosθ,0<θ<2π,则角θ的取值范围是( )A. | [$\frac{π}{2}$,π]∪[$\frac{3π}{2}$,2π) | B. | [$\frac{π}{4}$,$\frac{π}{2}$]∪[π,$\frac{5π}{4}$]∪[$\frac{3π}{2}$,2π) | ||
C. | [$\frac{π}{4}$,π]∪[$\frac{5π}{4}$,2π) | D. | [$\frac{π}{4}$,$\frac{π}{2}$]∪[$\frac{5π}{4}$,$\frac{3π}{2}$]∪[$\frac{7π}{4}$,2π) |
分析 利用立方差公式结合三角函数的图象和性质进行求解即可.
解答 解:∵sin3θ-cos3θ=(sinθ-cosθ)(sin2θ+sinθcosθ+cos2θ)=(sinθ-cosθ)(1+sinθcosθ),
∴若sin3θ-cos3θ≥sinθ-cosθ,
则(sinθ-cosθ)(1+sinθcosθ)≥sinθ-cosθ,
即(sinθ-cosθ)•(sinθcosθ)≥0,
即$\left\{\begin{array}{l}{sinθ≥cosθ}\\{sinθcosθ≥0}\end{array}\right.$或$\left\{\begin{array}{l}{sinθ≤cosθ}\\{sinθcosθ≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{\frac{π}{4}≤θ≤\frac{5π}{4}}\\{\frac{π}{4}≤θ≤\frac{π}{2}或π≤θ≤\frac{3π}{2}}\end{array}\right.$或$\left\{\begin{array}{l}{0<θ≤\frac{π}{4}或\frac{5π}{4}≤θ<2π}\\{\frac{π}{2}≤θ≤π或\frac{3π}{2}≤θ<2π}\end{array}\right.$,
即$\frac{π}{4}$≤θ≤$\frac{π}{2}$或π≤θ≤$\frac{5π}{4}$或$\frac{3π}{2}$≤θ<2π,
即角θ的取值范围是[$\frac{π}{4}$,$\frac{π}{2}$]∪[π,$\frac{5π}{4}$]∪[$\frac{3π}{2}$,2π),
故选:B.
点评 本题主要考查三角函数的图象和性质,利用立方公式进行化简是解决本题的关键.
A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{1}{2}$ | D. | 2 |