题目内容

已知等差数列的公差不为零,其前n项和为,若=70,且成等比数列,
(1)求数列的通项公式;
(2)设数列的前n项和为,求证:

(1);(2)答案详见解析.

解析试题分析:数列问题要注意以下两点①等差(比)数列中各有5个基本量,建立方程组可“知三求二”;②数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意用函数的思想求解.(1)由题知,展开,又,利用等差数列通项公式展开,得方程,联立求,进而求数列的通项公式;(2)求数列前项和,首先考虑其通项公式,利用裂项相消法,求得,将其看作自变量为的函数,求其值域即可.
试题解析:(1)由题知,即,           2分
解得(舍去),              4分
所以数列的通项公式为 .                     4分
(2)由(1)得                    7分
                       8分

=                          10分
可知,即                 11分
可知是递增数列,则           13分
可证得:              14分
考点:1、等差数列的通项公式;2、等差数列前前项和;3、裂项相消法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网