题目内容
【题目】为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如下资料:
组号 | 1 | 2 | 3 | 4 | 5 |
温差() | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:,)
【答案】(1);(2)(1)中所得的回归直线方程可靠.
【解析】
试题分析:(1)根据表中的数据,利用公式计算成的值,在利用公式求得和的值,即可求解回归直线方程;(2)分别计算当时和时对应的,可通过比较得到结论.
试题解析:(1)由题意:,,
.
,
故回归直线方程为:.
(2)当时,,,
当时,,,
∴(1)中所得的回归直线方程可靠.
【题目】某校高二奥赛班名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.
(1)求总人数和分数在110-115分的人数;
(2)现准备从分数在110-115的名学生(女生占)中任选3人,求其中恰好含有一名女生的概率;
(3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩(满分150分),物理成绩进行分析,下面是该生7次考试的成绩.
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知该生的物理成绩与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理成绩大约是多少?
附:对于一组数据,……,其回归线的斜率和截距的最小二乘估计分别为:,.