题目内容

【题目】在平面直角坐标系中,已知倾斜角为的直线经过点.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)写出曲线的普通方程;

(2)若直线与曲线有两个不同的交点,求的取值范围.

【答案】(1) .

(2) .

【解析】

分析:(1)利用极坐标与直角坐标互化的公式可得曲线的普通方程为.

(2)联立直线的参数方程与C的二次方程可得 .结合直线参数的几何意义有 .利用三角函数的性质可知的取值范围是.

详解:(1).

,代入上式中,

得曲线的普通方程为.

(2)的参数方程 (为参数)代入的方程,

整理得 .

因为直线与曲线有两个不同的交点,

所以 ,化简得.

,所以,且.

设方程的两根为,

所以,

所以 .

,得

所以,从而

的取值范围是.

练习册系列答案
相关题目

【题目】对于两条平行直线(下方)和图象有如下操作:将图象在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象:再将图在直线下方的部分沿直线翻折,其余部分保持不变,得到图象;再将图象在直线上方的部分沿直线翻折,其余部分保持不变,得到图象;以此类推…;直到图象上所有点均在之间()操作停止,此时称图象为图象关于直线衍生图形,线段关于直线的“衍生图形”为折线段.

(1)直线型

平面直角坐标系中,设直线,直线

令图象的函数图象,则图象的解析式为

②令图像的函数图象,请你画出的图象

若函数的图象与图象有且仅有一个交点,且交点在轴的左侧,那么的取值范围是_______.

请你观察图象并描述其单调性,直接写出结果_______.

请你观察图象并判断其奇偶性,直接写出结果_______.

图象所对应函数的零点为_______.

任取图象中横坐标的点,那么在这个变化范围中所能取到的最高点的坐标为(______________),最低点坐标为(______________.

若直线与图象2个不同的交点,则的取值范围是_______.

根据函数图象,请你写出图象的解析式_______.

(2)曲线型

若图象为函数的图象,

平面直角坐标系中,设直线,直线

则我们可以很容易得到所对应的解析式为.

请画出的图象,记所对应的函数解析式为.

函数的单调增区间为_______,单调减区间为_______.

时候,函数的最大值为_______,最小值为_______.

若方程有四个不同的实数根,则的取值范围为_______.

(3)封闭图形型

平面直角坐标系中,设直线,直线

设图象为四边形,其顶点坐标分别为,,,,四边形关于直线的“衍生图形”为.

的周长为_______.

②若直线平分的周长,_______.

③将沿右上方方向平移个单位,则平移过程中所扫过的面积为_______.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网