题目内容
【题目】已知在平面四边形ABCD中,AB= ,BC=2,AC⊥CD,AC=CD,则四边形ABCD面积的最大值为 .
【答案】3+
【解析】解:如图所示,
设∠ABC=θ,θ∈(0,π),
则在△ABC中,由余弦定理得,
AC2=AB2+BC2﹣2ABBCcosθ=6﹣4 cosθ;
∴四边形ABCD的面积为
S=S△ABC+S△ACD
= (ABBCsinθ+ACCD),
化简得
S= (2 sinθ+6﹣4 cosθ)
=3+ (sinθ﹣2cosθ)
=3+ sin(θ﹣φ),
其中tanφ=2,
当sin(θ﹣φ)=1时,
S取得最大值为3+ .
故答案为:3+ .
设∠ABC=θ,θ∈(0,π),由余弦定理求出AC2 , 再求四边形ABCD的面积表达式,利用三角恒等变换求出它的最大值.
【题目】某社区超市购进了A,B,C,D四种新产品,为了解新产品的销售情况,该超市随机调查了15位顾客(记为ai , i=1,2,3,…,15)购买这四种新产品的情况,记录如下(单位:件):
顾 | a1 | a2 | a3 | a4 | a5 | a6 | a7 | a8 | a9 | a10 | a11 | a12 | a13 | a14 | a15 |
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若该超市每天的客流量约为300人次,一个月按30天计算,试估计产品A的月销售量(单位:件);
(Ⅱ)为推广新产品,超市向购买两种以上(含两种)新产品的顾客赠送2元电子红包.现有甲、乙、丙三人在该超市购物,记他们获得的电子红包的总金额为X,求随机变量X的分布列和数学期望;
(Ⅲ)若某顾客已选中产品B,为提高超市销售业绩,应该向其推荐哪种新产品?(结果不需要证明)
【题目】某学校高一、高二、高三三个年级共有300名教师,为调查他们的备课时间情况,通过分层抽样获得了20名教师一周的备课时间,数据如下表(单位:小时):
高一年级 | 7 | 7.5 | 8 | 8.5 | 9 | |||
高二年级 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | |
高三年级 | 6 | 6.5 | 7 | 8.5 | 11 | 13.5 | 17 | 18.5 |
(1)试估计该校高三年级的教师人数;
(2)从高一年级和高二年级抽出的教师中,各随机选取一人,高一年级选出的人记为甲,高二年级选出的人记为乙,假设所有教师的备课时间相对独立,求该周甲的备课时间不比乙的备课时间长的概率;
(3)再从高一、高二、高三三个年级中各随机抽取一名教师,他们该周的备课时间分别是8、9、10(单位:小时),这三个数据与表格中的数据构成的新样本的平均数记为 ,表格中的数据平均数记为 ,试判断 与 的大小.(结论不要求证明)