题目内容
1.已知函数y=f(x)(x∈R)是奇函数,其部分图象如图所示,则在(-2,0)上与函数f(x)的单调性相同的是( )
A. | y=x2+1 | B. | y=log2|x| | ||
C. | $y=\left\{\begin{array}{l}{e^x}(x≥0)\\{e^{-x}}(x<0)\end{array}\right.$ | D. | y=cosx |
分析 根据函数f(x)的奇偶性得出:函数y=f(x)(x∈R)(-2,0)上单调递增,
利用给出的解析式判断y=x2在(-2,0)上单调递减,y=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{e}^{-x},x<0}\end{array}\right.$在(-2,0)上单调递减,y=log2|x|=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,y=cosx在(-2,0)上单调递增,
判断出答案.
解答 解:根据图象可以判断出(0,2)单调递增,
∵函数y=f(x)(x∈R)是奇函数,
∴图象关于原点对称,
可知:(-2,0)上单调递增,
∵y=x2在(-2,0)上单调递减,
∴故A错误,
∵y=log2|x|=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,
∴在(-2,0)上单调递减,
∴故B错误,
∵y=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{{e}^{-x},x<0}\end{array}\right.$在(-2,0)上单调递减,
∴故C错误
∵y=cosx在(-2,0)上单调递增,
∴D正确,
故选:D.
点评 本题考查了根据函数的解析式判断图形的性质,单调性,难度不大,掌握好常见的函数即可,属于中档题.
练习册系列答案
相关题目
11.已知命题甲:sina-cosa=$\sqrt{2}$,命题乙:双曲线$\frac{{x}^{2}}{co{s}^{2}a}$-$\frac{{y}^{2}}{si{n}^{2}a}$=1的渐近线与圆(x-1)2+y2=$\frac{1}{2}$相切,则命题甲为命题乙的( )
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分又不必要条件 |
9.设l,m是两条不同的直线,a是一个平面,则下列说法正确的是( )
A. | 若l⊥m,m?,则l⊥a | B. | 若l⊥a,l∥m,则m⊥a | C. | 若l∥a,m?a,则l∥m | D. | 若l∥a,m∥a,则l∥m |
6.若实数x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ x-2y-4≤0\\ x≥1\end{array}\right.$,则点P(x,y)落在圆(x-1)2+(y-3)2=4内的概率为( )
A. | $\frac{π}{27}$ | B. | $\frac{2π}{27}$ | C. | $\frac{π}{9}$ | D. | $\frac{2π}{9}$ |
13.若对任意非负实数x都有$({x-m})•{e^{-x}}-\sqrt{x}<0$,则实数m的取值范围为( )
A. | (0,+∞) | B. | (-∞,0) | C. | $(-∞,-\frac{1}{e})$ | D. | $(-\frac{1}{e},e)$ |