题目内容

12.已知三角形的三边a,b,c,三角形的重心到外接圆的距离为d,外接圆半径为R,求证:a2+b2+c2+9d2=9R2

分析 以△ABC的外心为原点建立坐标系,可令A、B、C的坐标依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).令AB中点为D、△ABC的重心为G(m,n),求出m,n,进而可证明a2+b2+c2+9d2=9R2

解答 证明:以△ABC的外心为原点建立坐标系,显然,△ABC的外接圆方程是:x2+y2=R2
∴可令A、B、C的坐标依次是:(Rcosα,Rsinα)、(Rcosβ,Rsinβ)、(Rcosγ,Rsinγ).
令AB中点为D、△ABC的重心为G(m,n).
由中点坐标公式,得D的坐标为($\frac{1}{2}$R(cosα+cosβ),$\frac{1}{2}$R(sinα+sinβ)).
∵$\frac{CG}{DG}$=2,
∴有m=$\frac{Rcosγ+2R•\frac{1}{2}(cosα+cosβ)}{1+2}$=$\frac{1}{3}$R(cosα+cosβ+cosγ),n=$\frac{1}{3}$R(sinα+sinβ+sinγ).
于是:
a2=(Rcosβ-Rcosγ)2+(Rsinβ-Rsinγ)2=R2(2-2cosβcosγ-2sinβsinγ)
b2=(Rcosα-Rcosγ)2+(Rsinα-Rsinγ)2=R2(2-2cosαcosγ-2sinαsinγ),
c2=(Rcosα-Rcosβ)2+(Rsinα-Rsinβ)2=R2(2-2cosαcosβ-2sinαsinβ).
9d2=9[(m-0)2+(n-0)2]=9{[$\frac{1}{3}$R(cosα+cosβ+cosγ)-0]2+[$\frac{1}{3}$R(sinα+sinβ+sinγ)-0]2}
=R2[(cosα+cosβ+cosγ)2+(sinα+sinβ+sinγ)2]
=R2(3+2cosαcosβ+2cosβcosγ+2cosαcosγ+2sinαsinβ+2sinβsinγ+2sinαsinγ).
∴a2+b2+c2+9d2=9R2

点评 本题考查综合法的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网