ÌâÄ¿ÄÚÈÝ

9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2}{x+1}$£¬µãOΪ×ø±êÔ­µã£¬µãAn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©£¬ÏòÁ¿$\overrightarrow{i}$=£¨0£¬1£©£¬¦ÈnÊÇÏòÁ¿$\overrightarrow{O{A}_{n}}$ÓëiµÄ¼Ð½Ç£¬Ôò$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄֵΪ$\frac{2015}{1008}$£®

·ÖÎö ¸ù¾ÝÌâÒ⣬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬»¯¼ò$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$Ϊ$\frac{f£¨n£©}{n}$£¬
´Ó¶øÇó³ö$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄÖµ£®

½â´ð ½â£º¸ù¾ÝÌâÒâµÃ£¬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬
¡à$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$=$\frac{sin£¨\frac{¦Ð}{2}{-¦È}_{n}£©}{cos£¨\frac{¦Ð}{2}{-¦È}_{n}£©}$
=tan£¨$\frac{¦Ð}{2}$-¦Èn£©
=$\frac{f£¨n£©}{n}$
=$\frac{2}{n£¨n+1£©}$
=2£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬
¡à$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡­+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$=2£¨1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+¡­+$\frac{1}{2015}$-$\frac{1}{2016}$£©
=2£¨1-$\frac{1}{2016}$£©
=$\frac{2015}{1008}$£®
¹Ê´ð°¸Îª£º$\frac{2015}{1008}$£®

µãÆÀ ±¾Ì⿼²éÁËƽÃæÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßµÄÇãб½ÇÓëбÂʵÄÓ¦ÓÃÎÊÌâÒÔ¼°Çóº¯ÊýÖµµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø