ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªº¯Êýf£¨x£©=$\frac{2}{x+1}$£¬µãOΪ×ø±êԵ㣬µãAn£¨n£¬f£¨n£©£©£¨n¡ÊN*£©£¬ÏòÁ¿$\overrightarrow{i}$=£¨0£¬1£©£¬¦ÈnÊÇÏòÁ¿$\overrightarrow{O{A}_{n}}$ÓëiµÄ¼Ð½Ç£¬Ôò$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄֵΪ$\frac{2015}{1008}$£®·ÖÎö ¸ù¾ÝÌâÒ⣬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬»¯¼ò$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$Ϊ$\frac{f£¨n£©}{n}$£¬
´Ó¶øÇó³ö$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$µÄÖµ£®
½â´ð ½â£º¸ù¾ÝÌâÒâµÃ£¬$\frac{¦Ð}{2}$-¦ÈnÊÇÖ±ÏßOAnµÄÇãб½Ç£¬
¡à$\frac{co{s¦È}_{n}}{si{n¦È}_{n}}$=$\frac{sin£¨\frac{¦Ð}{2}{-¦È}_{n}£©}{cos£¨\frac{¦Ð}{2}{-¦È}_{n}£©}$
=tan£¨$\frac{¦Ð}{2}$-¦Èn£©
=$\frac{f£¨n£©}{n}$
=$\frac{2}{n£¨n+1£©}$
=2£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬
¡à$\frac{cos{¦È}_{1}}{sin{¦È}_{1}}$+$\frac{cos{¦È}_{2}}{sin{¦È}_{2}}$+$\frac{cos{¦È}_{3}}{sin{¦È}_{3}}$+¡+$\frac{cos{¦È}_{2015}}{sin{¦È}_{2015}}$=2£¨1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+¡+$\frac{1}{2015}$-$\frac{1}{2016}$£©
=2£¨1-$\frac{1}{2016}$£©
=$\frac{2015}{1008}$£®
¹Ê´ð°¸Îª£º$\frac{2015}{1008}$£®
µãÆÀ ±¾Ì⿼²éÁËƽÃæÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÖ±ÏßµÄÇãб½ÇÓëбÂʵÄÓ¦ÓÃÎÊÌâÒÔ¼°Çóº¯ÊýÖµµÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
A£® | ÓÐ×îСֵ3£¬×î´óÖµ9 | B£® | ÓÐ×îСֵ9£¬ÎÞ×î´óÖµ | ||
C£® | ÓÐ×îСֵ8£¬ÎÞ×î´óÖµ | D£® | ÓÐ×îСֵ3£¬×î´óÖµ8 |
A£® | {x|0£¼x¡Ü3£¬x¡Êz} | B£® | {x|0¡Üx¡Ü3£¬x¡Êz} | C£® | {x|-1¡Üx¡Ü0£¬x¡Êz} | D£® | {x|-1¡Üx£¼0£¬x¡Êz} |
A£® | 8 | B£® | 9 | C£® | 10 | D£® | 11 |
¿¼ÊÔµÚ´Î | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
³É¼¨£¨·Ö£© | 65 | 78 | 85 | 87 | 88 | 99 | 90 | 94 | 93 | 102 | 105 | 116 |