ÌâÄ¿ÄÚÈÝ
7£®xΪʵÊý£¬[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[1.3]=1£¬[-1.3]=-2£®Èôº¯Êýf£¨x£©=sinx-[sinx]£¬ÔòÏÂÁнáÂÛÖУº¢Ùº¯Êýf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ2¦ÐµÄÖÜÆÚº¯Êý£»
¢Úº¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$£©ÉϵÝÔö£¬ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð]Éϵݼõ£»
¢Ûº¯Êýf£¨x£©ÎªÆ溯Êý£»
¢Üº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬1]£®
ÆäÖÐÕýÈ·µÄ½áÂ۵ĸöÊýÊÇ£¨¡¡¡¡£©
A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ¸ù¾Ýy=sinx ºÍy=[sinx]µÄÖÜÆÚ¶¼ÊÇ2¦Ð£¬¿ÉµÃº¯Êýf£¨x£©ÊÇ×îСÕýÖÜÆÚΪ2¦ÐµÄÖÜÆÚº¯Êý£¬Çó³öËüÔÚÒ»¸öÖÜÆÚ[0£¬2¦Ð]ÉϵĽâÎöʽ£¬·ÖÎö¿ÉµÃ½áÂÛ£®
½â´ð ½â£ºÓÉÓÚy=sinx ºÍy=[sinx]µÄÖÜÆÚ¶¼ÊÇ2¦Ð£¬¹Êº¯Êýf£¨x£©=sinx-[sinx]ÊÇ×îСÕýÖÜÆÚΪ2¦ÐµÄÖÜÆÚº¯Êý£¬
¹Ê¢ÙÕýÈ·£®
º¯Êýf£¨x£©=sinx-[sinx]ÔÚÒ»¸öÖÜÆÚ[0£¬2¦Ð]ÉϵĽâÎöʽΪ f£¨x£©=$\left\{\begin{array}{l}{sinx£¬x¡Ê[0£¬\frac{¦Ð}{2}£©}\\{0£¬x=\frac{¦Ð}{2}»òx=2¦Ð}\\{sinx£¬x¡Ê£¨\frac{¦Ð}{2}£¬¦Ð]}\\{sinx+1£¬x¡Ê£¨¦Ð£¬2¦Ð£©}\end{array}\right.$£¬
ÓÉf£¨x£©µÄ½âÎöʽ¿ÉµÃº¯Êýf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$£©ÉϵÝÔö£¬ÔÚ£¨$\frac{¦Ð}{2}$£¬¦Ð]Éϵݼõ£¬¹Ê¢ÚÕýÈ·£®
ÓÉÓÚº¯Êýy=[sinx]ÊÇ·ÇÆæ·Çżº¯Êý£¬¹Ê¢Û´íÎó£®
ÓÉf£¨x£©µÄ½âÎöʽ¿ÉµÃº¯Êýf£¨x£©¿ÉµÃf£¨x£©µÄÖµÓòΪ[0£¬1£©£¬¹Ê¢Ü²»ÕýÈ·£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬º¯ÊýµÄͼÏóÌØÕ÷£¬º¯ÊýµÄµ¥µ÷ÐÔ¡¢ÖÜÆÚÐÔ¡¢ÆæżÐÔ¡¢¶¨ÒåÓòºÍÖµÓò£¬ÊôÓÚÖеµÌ⣮
A£® | £¨30£¬32£© | B£® | £¨32£¬34£© | C£® | £¨32£¬36£© | D£® | £¨30£¬36£© |